17L 2s (3/1-equivalent): Difference between revisions

Wikispaces>JosephRuhf
**Imported revision 594964514 - Original comment: **
Wikispaces>FREEZE
No edit summary
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
Using a generator as which is as sharp as possible for an 'ordinary' ~5:3, this MOS is the most complex parent scale for an Arcturus-like temperament. It is also the most complex parent MOS for a temperament where two generators make an "ordinary" ~14:5 (the simplest is the proper Arcturus scale).
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:JosephRuhf|JosephRuhf]] and made on <tt>2016-10-11 19:02:27 UTC</tt>.<br>
: The original revision id was <tt>594964514</tt>.<br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
<h4>Original Wikitext content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">Using a generator as which is as sharp as possible for an 'ordinary' ~5:3, this MOS is the most complex parent scale for an Arcturus-like temperament. It is also the most complex parent MOS for a temperament where two generators make an "ordinary" ~14:5 (the simplest is the proper Arcturus scale).


||||||||||||||~ Generator ||~ cents ||~ L ||~ s ||~ 2g ||~ Notes ||
{| class="wikitable"
||= 8\17 ||=  ||=  ||=  ||=  ||=  ||=  ||= 895.038 ||= 111.88 ||= 0.00 ||= 1790.075 ||= L=1 s=0 ||
|-
||=  ||=  ||=  ||=  ||=  ||=  ||= 57\121 ||= 895.962 ||= 110.0305 ||= 15.719 ||= 1791.925 ||= L=7 s=1 ||
! colspan="7" | Generator
||=  ||=  ||=  ||=  ||=  ||= 49\104 ||=  ||= 896.113 ||= 109.728 ||= 18.288 ||= 1792.227 ||= L=6 s=1 ||
! | cents
||=  ||=  ||=  ||=  ||=  ||=  ||= 90\191 ||= 896.209 ||= 109.537 ||= 19.916 ||= 1792.418 ||=  ||
! | L
||=  ||=  ||=  ||=  ||= 41\87 ||=  ||=  ||= 896.324 ||= 109.308 ||= 21.862 ||= 1792.647 ||= L=5 s=1 ||
! | s
||=  ||=  ||=  ||=  ||=  ||=  ||= 115\244 ||= 896.413 ||= 109.129 ||= 23.385 ||= 1792.826 ||=  ||
! | 2g
||=  ||=  ||=  ||=  ||=  ||= 74\157 ||=  ||= 896.463 ||= 109.029 ||= 24.229 ||= 1792.926 ||=  ||
! | Notes
||=  ||=  ||=  ||=  ||=  ||=  ||= 107\227 ||= 896.516 ||= 108.9225 ||= 25.136 ||= 1793.032 ||=  ||
|-
||=  ||=  ||=  ||= 33\70 ||=  ||=  ||=  ||= 896.636 ||= 108.683 ||= 27.171 ||= 1793.272 ||= L=4 s=1 ||
| style="text-align:center;" | 8\17
||=  ||=  ||=  ||=  ||=  ||=  ||= 124\263 ||= 896.739 ||= 108.4765 ||= 28.927 ||= 1793.478 ||=  ||
| style="text-align:center;" |
||=  ||=  ||=  ||=  ||=  ||= 91\193 ||=  ||= 896.777 ||= 108.402 ||= 33.368 ||= 1793.553 ||=  ||
| style="text-align:center;" |
||=  ||=  ||=  ||=  ||=  ||=  ||= 149\316 ||= 896.808 ||= 108.339 ||= 30.094 ||= 1793.616 ||=  ||
| style="text-align:center;" |
||=  ||=  ||=  ||=  ||= 58\123 ||=  ||=  ||= 896.857 ||= 108.241 ||= 30.926 ||= 1793.714 ||= L=7 s=2 ||
| style="text-align:center;" |
||=  ||=  ||=  ||=  ||=  ||=  ||= 141\299 ||= 896.9085 ||= 108.138 ||= 31.805 ||= 1793.817 ||=  ||
| style="text-align:center;" |
||=  ||=  ||=  ||=  ||=  ||= 83\176 ||=  ||= 896.945 ||= 108.066 ||= 32.42 ||= 1793.889 ||=  ||
| style="text-align:center;" |
||=  ||=  ||=  ||=  ||=  ||=  ||= 108\229 ||= 896.992 ||= 107.971 ||= 33.222 ||= 1793.984 ||=  ||
| style="text-align:center;" | 895.038
||=  ||=  ||= 25\53 ||=  ||=  ||=  ||=  ||= 897.149 ||= 107.658 ||= 35.886 ||= 1794.297 ||= L=3 s=1 ||
| style="text-align:center;" | 111.88
||=  ||=  ||=  ||=  ||=  ||=  ||= 117\248 ||= 897.293 ||= 107.368 ||= 38.346 ||= 1794.587 ||=  ||
| style="text-align:center;" | 0.00
||=  ||=  ||=  ||=  ||=  ||= 92\195 ||=  ||= 897.333 ||= 107.29 ||= 39.0145 ||= 1794.665 ||=  ||
| style="text-align:center;" | 1790.075
||=  ||=  ||=  ||=  ||=  ||=  ||= 159\337 ||= 897.362 ||= 107.232 ||= 39.5065 ||= 1794.723 ||=  ||
| style="text-align:center;" | L=1 s=0
||=  ||=  ||=  ||=  ||= 67\142 ||=  ||=  ||= 897.401 ||= 107.152 ||= 40.182 ||= 1794.803 ||=  ||
|-
||=  ||=  ||=  ||=  ||=  ||=  ||= 176\375 ||= 897.437 ||= 107.081 ||= 40.793 ||= 1794.874 ||=  ||
| style="text-align:center;" |
||=  ||=  ||=  ||=  ||=  ||= 109\231 ||=  ||= 897.459 ||= 107.036 ||= 41.168 ||= 1794.919 ||=  ||
| style="text-align:center;" |
||=  ||=  ||=  ||=  ||=  ||=  ||= 151\320 ||= 897.485 ||= 106.985 ||= 41.605 ||= 1794.97 ||=  ||
| style="text-align:center;" |
||=  ||=  ||=  ||= 42\89 ||=  ||=  ||=  ||= 897.552 ||= 106.851 ||= 42.741 ||= 1795.104 ||= L=5 s=2 ||
| style="text-align:center;" |
||=  ||=  ||=  ||=  ||=  ||=  ||= 143\303 ||= 897.622 ||= 106.71 ||= 43.94 ||= 1795.245 ||=  ||
| style="text-align:center;" |
||=  ||=  ||=  ||=  ||=  ||= 101\214 ||=  ||= 897.652 ||= 106.652 ||= 44.438 ||= 1795.303 ||=  ||
| style="text-align:center;" |
||=  ||=  ||=  ||=  ||=  ||=  ||= 160\339 ||= 897.678 ||= 106.599 ||= 44.884 ||=
| style="text-align:center;" | 57\121
| style="text-align:center;" | 895.962
| style="text-align:center;" | 110.0305
| style="text-align:center;" | 15.719
| style="text-align:center;" | 1791.925
| style="text-align:center;" | L=7 s=1
|-
| style="text-align:center;" |
| style="text-align:center;" |
| style="text-align:center;" |
| style="text-align:center;" |
| style="text-align:center;" |
| style="text-align:center;" | 49\104
| style="text-align:center;" |
| style="text-align:center;" | 896.113
| style="text-align:center;" | 109.728
| style="text-align:center;" | 18.288
| style="text-align:center;" | 1792.227
| style="text-align:center;" | L=6 s=1
|-
| style="text-align:center;" |
| style="text-align:center;" |
| style="text-align:center;" |
| style="text-align:center;" |
| style="text-align:center;" |
| style="text-align:center;" |
| style="text-align:center;" | 90\191
| style="text-align:center;" | 896.209
| style="text-align:center;" | 109.537
| style="text-align:center;" | 19.916
| style="text-align:center;" | 1792.418
| style="text-align:center;" |
|-
| style="text-align:center;" |
| style="text-align:center;" |
| style="text-align:center;" |
| style="text-align:center;" |
| style="text-align:center;" | 41\87
| style="text-align:center;" |
| style="text-align:center;" |
| style