Talk:Table of 612edo intervals: Difference between revisions

Wikispaces>FREEZE
No edit summary
 
Wikispaces>FREEZE
No edit summary
Line 1: Line 1:
= ARCHIVED WIKISPACES DISCUSSION BELOW =
{{WSArchiveLink}}
'''All discussion below is archived from the Wikispaces export in its original unaltered form.'''
----
 
== Typographical change ==
In the first rows, I marked the specifically new ratios that result from the limit increment. I found that gives this table a "face" - what do you think?
 
- '''xenwolf''' January 31, 2012, 12:25:29 AM UTC-0800
----
I don't care either way.
 
- '''keenanpepper''' January 31, 2012, 01:23:24 AM UTC-0800
----
 
== Intervals shown are too complex ==
For example, why is 77 steps given as 67108864/61509375 in the 11 limit, rather than 12/11?
 
- '''keenanpepper''' January 30, 2012, 01:03:33 AM UTC-0800
----
My pocket calculated results are that from 77\612,
 
<ul><li>the complex interval differs by 7.342 ct612</li><li>the simple interval has a distance of 17,51 ct612</li></ul>(ct612 is the relative cent of 612edo == 1\61200 == pow(2, 1/61200))
 
...of course, in 612edo, the 12/11 ratio is approximated best by 77\612.
 
- '''xenwolf''' January 30, 2012, 01:48:57 AM UTC-0800
----
Yeah, I know the 612 table is not very good, but I never got around to fixing the reduction routine and thereby fixing the table.
 
- '''genewardsmith''' January 30, 2012, 09:59:30 AM UTC-0800
----
489 of the 612 11-limit intervals appear in the third-order 11-limit diamond: that is, in diamond(diamond(diamond([1,3,5,7,9,11]))). I'm computing the fourth-order diamond now. This might serve as a basis for a better table.
 
- '''genewardsmith''' January 30, 2012, 11:11:54 AM UTC-0800
----
Computing the fourth-order diamond was taking too long. The product of the diamond with the third order diamond gives 609 intervals, which should suffice for starters. The five-limit fourth order diamond was easy to compute, and that gives 608 intervals. So I think I can get this done in this manner.
 
- '''genewardsmith''' January 30, 2012, 12:17:49 PM UTC-0800
----
Looking much better!
 
- '''keenanpepper''' January 30, 2012, 07:51:38 PM UTC-0800
----
Looking much better!
 
- '''keenanpepper''' January 30, 2012, 07:51:39 PM UTC-0800
----
What about adding distances or (some kind of) degree of accuracy?
 
- '''xenwolf''' January 31, 2012, 12:16:20 AM UTC-0800
----
Return to "Table of 612edo intervals" page.