OTC 7L 5s: Difference between revisions

Wikispaces>spt3125
**Imported revision 590308978 - Original comment: **
 
Wikispaces>FREEZE
No edit summary
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
Omnitetrachordal MOS scale
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
 
: This revision was by author [[User:spt3125|spt3125]] and made on <tt>2016-08-28 21:24:43 UTC</tt>.<br>
[[7L_5s|7L+5s]]
: The original revision id was <tt>590308978</tt>.<br>
 
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
<h4>Original Wikitext content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">Omnitetrachordal MOS scale
[[7L 5s|7L+5s]]
12 tones (5+2+5)
12 tones (5+2+5)


MOS of the [[meantone]] and [[Meantone family#Flattone|flattone]] temperaments (slightly flat 3/2).  [[Gallery of omnitetrachordal scales#perfect|Imperfect]], but very usable at any L/s ratio.  Many modes may be pentachordally split in two ways.
MOS of the [[Meantone|meantone]] and [[Meantone_family#Flattone|flattone]] temperaments (slightly flat 3/2).  [[Gallery_of_omnitetrachordal_scales#perfect|Imperfect]], but very usable at any L/s ratio.  Many modes may be pentachordally split in two ways.


[[Gallery of omnitetrachordal scales#perfect|P]] = 0.7936402416
[[Gallery_of_omnitetrachordal_scales#perfect|P]] = 0.7936402416
[[Gallery of omnitetrachordal scales#Q|Q]] = 6.0713810872 (4/3 = 3L+1.5s)
 
[[Gallery_of_omnitetrachordal_scales#Q|Q]] = 6.0713810872 (4/3 = 3L+1.5s)


L = 100.00 to 171.43 cents (153.38 cents @ Q)
L = 100.00 to 171.43 cents (153.38 cents @ Q)
s = 0.00 to 100.00 cents (25.26 cents @ Q)
s = 0.00 to 100.00 cents (25.26 cents @ Q)


9/8 = L+s (171.43 to 200.00 cents)
9/8 = L+s (171.43 to 200.00 cents)
4/3 = 3L+2s (500.00 to 514.29 cents)
4/3 = 3L+2s (500.00 to 514.29 cents)
generator = 4/3
generator = 4/3


Line 25: Line 24:


all modes:
all modes:
|| || {{ sLLsL sL sLLsL }} || ||
|| || {{ LLsLs Ls LLsLs }} || ||
|| {{ Ls LsLsL LsLsL }} || {{ LsLsL sL LsLsL }} || ||
|| {{ sL sLsLL sLsLL }} || || ||
|| {{ Ls LsLLs LsLLs }} || || {{ LsLsL LsLsL Ls }} ||
|| {{ sL sLLsL sLLsL }} || || {{ sLsLL sLsLL sL }} ||
|| {{ Ls LLsLs LLsLs }} || || {{ LsLLs LsLLs Ls }} ||
|| {{ sL LsLsL LsLsL }} || || {{ sLLsL sLLsL sL }} ||
|| || || {{ LLsLs LLsLs Ls }} ||
|| || {{ LsLsL Ls LsLsL }} || {{ LsLsL LsLsL sL }} ||
|| || {{ sLsLL sL sLsLL }} || ||
|| || {{ LsLLs Ls LsLLs }} || ||


[[image:12_07_05_LsLLs_Ls_LsLLs.png]]
{| class="wikitable"
|-
| |
| | <tt> sLLsL sL sLLsL </tt>
| |
|-
| |
| | <tt> LLsLs Ls LLsLs </tt>
| |
|-
| | <tt> Ls LsLsL LsLsL </tt>
| | <tt> LsLsL sL LsLsL </tt>
| |
|-
| | <tt> sL sLsLL sLsLL </tt>
| |
| |
|-
| | <tt> Ls LsLLs LsLLs </tt>
| |
| | <tt> LsLsL LsLsL Ls </tt>
|-
| | <tt> sL sLLsL sLLsL </tt>
| |
| | <tt> sLsLL sLsLL sL </tt>
|-
| | <tt> Ls LLsLs LLsLs </tt>
| |
| | <tt> LsLLs LsLLs Ls </tt>
|-
| | <tt> sL LsLsL LsLsL </tt>
| |
| | <tt> sLLsL sLLsL sL </tt>
|-
| |
| |
| | <tt> LLsLs LLsLs Ls </tt>
|-
| |
| | <tt> LsLsL Ls LsLsL </tt>
| | <tt> LsLsL LsLsL sL </tt>
|-
| |
| | <tt> sLsLL sL sLsLL </tt>
| |
|-
| |
| | <tt> LsLLs Ls LsLLs </tt>
| |
|}
 
[[File:12_07_05_LsLLs_Ls_LsLLs.png|alt=12_07_05_LsLLs_Ls_LsLLs.png|12_07_05_LsLLs_Ls_LsLLs.png]]


===See also===
===See also===
* [[Omnitetrachordality]]
<ul><li>[[Omnitetrachordality|Omnitetrachordality]]</li><li>[[Gallery_of_omnitetrachordal_scales|Gallery of omnitetrachordal scales]]</li></ul>
* [[Gallery of omnitetrachordal scales]]


===References===
===References===
* Noted as omnitetrachordal by Paul Erlich no later than 2002. See tuning-math list messages [[http://robertinventor.com/tuning-math/s___4/msg_3675-3699.html#3685|3685]] and [[http://robertinventor.com/tuning-math/s__11/msg_10975-10999.html#10987|10987]].
<ul><li>Noted as omnitetrachordal by Paul Erlich no later than 2002. See tuning-math list messages [http://robertinventor.com/tuning-math/s___4/msg_3675-3699.html#3685 3685] and [http://robertinventor.com/tuning-math/s__11/msg_10975-10999.html#10987 10987].</li></ul>
</pre></div>
<h4>Original HTML content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;OTC 7L 5s&lt;/title&gt;&lt;/head&gt;&lt;body&gt;Omnitetrachordal MOS scale&lt;br /&gt;
&lt;a class="wiki_link" href="/7L%205s"&gt;7L+5s&lt;/a&gt;&lt;br /&gt;
12 tones (5+2+5)&lt;br /&gt;
&lt;br /&gt;
MOS of the &lt;a class="wiki_link" href="/meantone"&gt;meantone&lt;/a&gt; and &lt;a class="wiki_link" href="/Meantone%20family#Flattone"&gt;flattone&lt;/a&gt; temperaments (slightly flat 3/2).  &lt;a class="wiki_link" href="/Gallery%20of%20omnitetrachordal%20scales#perfect"&gt;Imperfect&lt;/a&gt;, but very usable at any L/s ratio.  Many modes may be pentachordally split in two ways.&lt;br /&gt;
&lt;br /&gt;
&lt;a class="wiki_link" href="/Gallery%20of%20omnitetrachordal%20scales#perfect"&gt;P&lt;/a&gt; = 0.7936402416&lt;br /&gt;
&lt;a class="wiki_link" href="/Gallery%20of%20omnitetrachordal%20scales#Q"&gt;Q&lt;/a&gt; = 6.0713810872 (4/3 = 3L+1.5s)&lt;br /&gt;
&lt;br /&gt;
L = 100.00 to 171.43 cents (153.38 cents @ Q)&lt;br /&gt;
s = 0.00 to 100.00 cents (25.26 cents @ Q)&lt;br /&gt;
&lt;br /&gt;
9/8 = L+s (171.43 to 200.00 cents)&lt;br /&gt;
4/3 = 3L+2s (500.00 to 514.29 cents)&lt;br /&gt;
generator = 4/3&lt;br /&gt;
&lt;br /&gt;
notable EDOs: 19, 26, 31, 33, 43, 45, 50, etc.&lt;br /&gt;
&lt;br /&gt;
all modes:&lt;br /&gt;
 
 
&lt;table class="wiki_table"&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;tt&gt; sLLsL sL sLLsL &lt;/tt&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;tt&gt; LLsLs Ls LLsLs &lt;/tt&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;tt&gt; Ls LsLsL LsLsL &lt;/tt&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;tt&gt; LsLsL sL LsLsL &lt;/tt&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;tt&gt; sL sLsLL sLsLL &lt;/tt&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;tt&gt; Ls LsLLs LsLLs &lt;/tt&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;tt&gt; LsLsL LsLsL Ls &lt;/tt&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;tt&gt; sL sLLsL sLLsL &lt;/tt&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;tt&gt; sLsLL sLsLL sL &lt;/tt&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;tt&gt; Ls LLsLs LLsLs &lt;/tt&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;tt&gt; LsLLs LsLLs Ls &lt;/tt&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;tt&gt; sL LsLsL LsLsL &lt;/tt&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;tt&gt; sLLsL sLLsL sL &lt;/tt&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;tt&gt; LLsLs LLsLs Ls &lt;/tt&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;tt&gt; LsLsL Ls LsLsL &lt;/tt&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;tt&gt; LsLsL LsLsL sL &lt;/tt&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;tt&gt; sLsLL sL sLsLL &lt;/tt&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;tt&gt; LsLLs Ls LsLLs &lt;/tt&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
&lt;/table&gt;
 
&lt;br /&gt;
&lt;!-- ws:start:WikiTextLocalImageRule:112:&amp;lt;img src=&amp;quot;/file/view/12_07_05_LsLLs_Ls_LsLLs.png/589273828/12_07_05_LsLLs_Ls_LsLLs.png&amp;quot; alt=&amp;quot;&amp;quot; title=&amp;quot;&amp;quot; /&amp;gt; --&gt;&lt;img src="/file/view/12_07_05_LsLLs_Ls_LsLLs.png/589273828/12_07_05_LsLLs_Ls_LsLLs.png" alt="12_07_05_LsLLs_Ls_LsLLs.png" title="12_07_05_LsLLs_Ls_LsLLs.png" /&gt;&lt;!-- ws:end:WikiTextLocalImageRule:112 --&gt;&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h3&amp;gt; --&gt;&lt;h3 id="toc0"&gt;&lt;a name="x--See also"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt;See also&lt;/h3&gt;
&lt;ul&gt;&lt;li&gt;&lt;a class="wiki_link" href="/Omnitetrachordality"&gt;Omnitetrachordality&lt;/a&gt;&lt;/li&gt;&lt;li&gt;&lt;a class="wiki_link" href="/Gallery%20of%20omnitetrachordal%20scales"&gt;Gallery of omnitetrachordal scales&lt;/a&gt;&lt;/li&gt;&lt;/ul&gt;&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:2:&amp;lt;h3&amp;gt; --&gt;&lt;h3 id="toc1"&gt;&lt;a name="x--References"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:2 --&gt;References&lt;/h3&gt;
&lt;ul&gt;&lt;li&gt;Noted as omnitetrachordal by Paul Erlich no later than 2002. See tuning-math list messages &lt;a class="wiki_link_ext" href="http://robertinventor.com/tuning-math/s___4/msg_3675-3699.html#3685" rel="nofollow"&gt;3685&lt;/a&gt; and &lt;a class="wiki_link_ext" href="http://robertinventor.com/tuning-math/s__11/msg_10975-10999.html#10987" rel="nofollow"&gt;10987&lt;/a&gt;.&lt;/li&gt;&lt;/ul&gt;&lt;/body&gt;&lt;/html&gt;</pre></div>