Würschmidt family: Difference between revisions

Wikispaces>genewardsmith
**Imported revision 187291107 - Original comment: **
Wikispaces>genewardsmith
**Imported revision 211898008 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2010-12-11 01:40:29 UTC</tt>.<br>
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2011-03-18 18:26:22 UTC</tt>.<br>
: The original revision id was <tt>187291107</tt>.<br>
: The original revision id was <tt>211898008</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
<h4>Original Wikitext content:</h4>
<h4>Original Wikitext content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">The 5-limit parent comma for the wuerschmidt family is 393216/390625, known as Wuerschmidt's comma. Its monzo is |17 1 -8&gt;, and flipping that yields &lt;&lt;8 1 -17|| for the wedgie. This tells us the generator is a major third, and that to get to the interval class of fifths will require eight of these. In fact, (5/4)^8 * 393216/390625 = 6. 14/53 or 21/65 are excellent generators, though 9/34 also makes sense and using 19edo is possible. Other tunings include 72edo, 87edo, 140edo and 164edo. Another tuning solution is to sharpen the major third by 1/8th of a Wuerschmift comma, which is to say by 1.43 cents, and thereby achieve pure fifths; this is the minimax tuning. Wuerschmidt is well-supplied with MOS scales, with 10, 13, 16, 19, 22, 25, 28 31 and 34 note MOS all possibilities.
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">[[toc|flat]]
 
=Wuerschmit=
The 5-limit parent comma for the wuerschmidt family is 393216/390625, known as Wuerschmidt's comma. Its monzo is |17 1 -8&gt;, and flipping that yields &lt;&lt;8 1 -17|| for the wedgie. This tells us the generator is a major third, and that to get to the interval class of fifths will require eight of these. In fact, (5/4)^8 * 393216/390625 = 6. 14/53 or 21/65 are excellent generators, though 9/34 also makes sense and using 19edo is possible. Other tunings include 72edo, 87edo, 140edo and 164edo. Another tuning solution is to sharpen the major third by 1/8th of a Wuerschmift comma, which is to say by 1.43 cents, and thereby achieve pure fifths; this is the minimax tuning. Wuerschmidt is well-supplied with MOS scales, with 10, 13, 16, 19, 22, 25, 28 31 and 34 note MOS all possibilities.


[[POTE tuning|POTE generator]]: 387.799
[[POTE tuning|POTE generator]]: 387.799
Line 17: Line 20:
The second comma of the [[Normal lists|normal comma list]] defines which 7-limit family member we are looking at. Wurschmidt adds |12 3 -6 -1&gt;, worschmidt adds 65625/65536 = |-16 1 5 1&gt;, whirrschmidt adds 4375/4374 = |-1 -7 4 1&gt; and hemiwuerschmidt adds 6144/6125 = |11 1 -3 -2&gt;.
The second comma of the [[Normal lists|normal comma list]] defines which 7-limit family member we are looking at. Wurschmidt adds |12 3 -6 -1&gt;, worschmidt adds 65625/65536 = |-16 1 5 1&gt;, whirrschmidt adds 4375/4374 = |-1 -7 4 1&gt; and hemiwuerschmidt adds 6144/6125 = |11 1 -3 -2&gt;.


===Wurschmidt===
=Wurschmidt=
Wurschmidt, aside from the commas listed above, also tempers out 225/224. [[31edo]] or [[127edo]] can be used as tunings. Wurschmidt has &lt;&lt;8 1 18 -17 6 39|| for a wedgie. It extends naturally to an 11-limit version &lt;&lt;8 1 18 20 ,,,|| which also tempers out 99/98, 176/175 and 243/242. [[127edo]] is again an excellent tuning for 11-limit wurschmidt, as well as for minerva, the 11-limit rank three temperament tempering out 99/98 and 176/175.
Wurschmidt, aside from the commas listed above, also tempers out 225/224. [[31edo]] or [[127edo]] can be used as tunings. Wurschmidt has &lt;&lt;8 1 18 -17 6 39|| for a wedgie. It extends naturally to an 11-limit version &lt;&lt;8 1 18 20 ,,,|| which also tempers out 99/98, 176/175 and 243/242. [[127edo]] is again an excellent tuning for 11-limit wurschmidt, as well as for minerva, the 11-limit rank three temperament tempering out 99/98 and 176/175.


Line 28: Line 31:
EDOs: 31, 127
EDOs: 31, 127


===Worschmidt===
=Worschmidt=
Worschmidt tempers out 126/125 rather than 225/224, and can use [[31edo]], [[34edo]], or [[127edo]] as a tuning. If 127 is used, note that the val is &lt;127 201 295 356| and not &lt;127 201 295 357| as with wurschmidt. The wedgie now is &lt;&lt;8 1 -13 -17 -43 -33|. In practice, of course, both mappings could be used ambiguously, which might be an interesting avenue for someone to explore.  
Worschmidt tempers out 126/125 rather than 225/224, and can use [[31edo]], [[34edo]], or [[127edo]] as a tuning. If 127 is used, note that the val is &lt;127 201 295 356| and not &lt;127 201 295 357| as with wurschmidt. The wedgie now is &lt;&lt;8 1 -13 -17 -43 -33|. In practice, of course, both mappings could be used ambiguously, which might be an interesting avenue for someone to explore.  


Line 39: Line 42:
EDOs: 31, 127
EDOs: 31, 127


===Whirrschmidt===
=Whirrschmidt=
[[99edo]] is such a good tuning for whirrschimdt that we hardly need look any farther. Unfortunately, the temperament while accurate is complex, with &lt;&lt;8 1 52 -17 60 118|| for a wedgie.
[[99edo]] is such a good tuning for whirrschimdt that we hardly need look any farther. Unfortunately, the temperament while accurate is complex, with &lt;&lt;8 1 52 -17 60 118|| for a wedgie.


Line 50: Line 53:
EDOs: 31, 34, 99
EDOs: 31, 34, 99


===Hemiwuerschmift===
=Hemiwuerschmift=
Hemiwuerschmidt, which splits the major third in two and uses that for a generator, is the most important of these temperaments even with the rather large complexity for the fifth. It tempers out 3136/3125, 6144/6125 and 2401/2400. [[68edo]], [[99edo]] and [[130edo]] can all be used as tunings, but 130 is not only the most accurate, it shows how hemiwuerschmidt extends to a higher limit temperament, &lt;&lt;16 2 5 40 -39 -49 -48 28...
Hemiwuerschmidt, which splits the major third in two and uses that for a generator, is the most important of these temperaments even with the rather large complexity for the fifth. It tempers out 3136/3125, 6144/6125 and 2401/2400. [[68edo]], [[99edo]] and [[130edo]] can all be used as tunings, but 130 is not only the most accurate, it shows how hemiwuerschmidt extends to a higher limit temperament, &lt;&lt;16 2 5 40 -39 -49 -48 28...


Line 61: Line 64:
EDOs: 31, 99, 229</pre></div>
EDOs: 31, 99, 229</pre></div>
<h4>Original HTML content:</h4>
<h4>Original HTML content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;Würschmidt family&lt;/title&gt;&lt;/head&gt;&lt;body&gt;The 5-limit parent comma for the wuerschmidt family is 393216/390625, known as Wuerschmidt's comma. Its monzo is |17 1 -8&amp;gt;, and flipping that yields &amp;lt;&amp;lt;8 1 -17|| for the wedgie. This tells us the generator is a major third, and that to get to the interval class of fifths will require eight of these. In fact, (5/4)^8 * 393216/390625 = 6. 14/53 or 21/65 are excellent generators, though 9/34 also makes sense and using 19edo is possible. Other tunings include 72edo, 87edo, 140edo and 164edo. Another tuning solution is to sharpen the major third by 1/8th of a Wuerschmift comma, which is to say by 1.43 cents, and thereby achieve pure fifths; this is the minimax tuning. Wuerschmidt is well-supplied with MOS scales, with 10, 13, 16, 19, 22, 25, 28 31 and 34 note MOS all possibilities.&lt;br /&gt;
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;Würschmidt family&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;!-- ws:start:WikiTextTocRule:12:&amp;lt;img id=&amp;quot;wikitext@@toc@@flat&amp;quot; class=&amp;quot;WikiMedia WikiMediaTocFlat&amp;quot; title=&amp;quot;Table of Contents&amp;quot; src=&amp;quot;/site/embedthumbnail/toc/flat?w=100&amp;amp;h=16&amp;quot;/&amp;gt; --&gt;&lt;!-- ws:end:WikiTextTocRule:12 --&gt;&lt;!-- ws:start:WikiTextTocRule:13: --&gt;&lt;a href="#Wuerschmit"&gt;Wuerschmit&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:13 --&gt;&lt;!-- ws:start:WikiTextTocRule:14: --&gt;&lt;!-- ws:end:WikiTextTocRule:14 --&gt;&lt;!-- ws:start:WikiTextTocRule:15: --&gt; | &lt;a href="#Wurschmidt"&gt;Wurschmidt&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:15 --&gt;&lt;!-- ws:start:WikiTextTocRule:16: --&gt; | &lt;a href="#Worschmidt"&gt;Worschmidt&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:16 --&gt;&lt;!-- ws:start:WikiTextTocRule:17: --&gt; | &lt;a href="#Whirrschmidt"&gt;Whirrschmidt&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:17 --&gt;&lt;!-- ws:start:WikiTextTocRule:18: --&gt; | &lt;a href="#Hemiwuerschmift"&gt;Hemiwuerschmift&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:18 --&gt;&lt;!-- ws:start:WikiTextTocRule:19: --&gt;
&lt;!-- ws:end:WikiTextTocRule:19 --&gt;&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc0"&gt;&lt;a name="Wuerschmit"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt;Wuerschmit&lt;/h1&gt;
The 5-limit parent comma for the wuerschmidt family is 393216/390625, known as Wuerschmidt's comma. Its monzo is |17 1 -8&amp;gt;, and flipping that yields &amp;lt;&amp;lt;8 1 -17|| for the wedgie. This tells us the generator is a major third, and that to get to the interval class of fifths will require eight of these. In fact, (5/4)^8 * 393216/390625 = 6. 14/53 or 21/65 are excellent generators, though 9/34 also makes sense and using 19edo is possible. Other tunings include 72edo, 87edo, 140edo and 164edo. Another tuning solution is to sharpen the major third by 1/8th of a Wuerschmift comma, which is to say by 1.43 cents, and thereby achieve pure fifths; this is the minimax tuning. Wuerschmidt is well-supplied with MOS scales, with 10, 13, 16, 19, 22, 25, 28 31 and 34 note MOS all possibilities.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;a class="wiki_link" href="/POTE%20tuning"&gt;POTE generator&lt;/a&gt;: 387.799&lt;br /&gt;
&lt;a class="wiki_link" href="/POTE%20tuning"&gt;POTE generator&lt;/a&gt;: 387.799&lt;br /&gt;
Line 69: Line 75:
EDOs: 31, 34, 65, 164&lt;br /&gt;
EDOs: 31, 34, 65, 164&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc0"&gt;&lt;a name="x-Seven limit children"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt;Seven limit children&lt;/h2&gt;
&lt;!-- ws:start:WikiTextHeadingRule:2:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc1"&gt;&lt;a name="Wuerschmit-Seven limit children"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:2 --&gt;Seven limit children&lt;/h2&gt;
The second comma of the &lt;a class="wiki_link" href="/Normal%20lists"&gt;normal comma list&lt;/a&gt; defines which 7-limit family member we are looking at. Wurschmidt adds |12 3 -6 -1&amp;gt;, worschmidt adds 65625/65536 = |-16 1 5 1&amp;gt;, whirrschmidt adds 4375/4374 = |-1 -7 4 1&amp;gt; and hemiwuerschmidt adds 6144/6125 = |11 1 -3 -2&amp;gt;.&lt;br /&gt;
The second comma of the &lt;a class="wiki_link" href="/Normal%20lists"&gt;normal comma list&lt;/a&gt; defines which 7-limit family member we are looking at. Wurschmidt adds |12 3 -6 -1&amp;gt;, worschmidt adds 65625/65536 = |-16 1 5 1&amp;gt;, whirrschmidt adds 4375/4374 = |-1 -7 4 1&amp;gt; and hemiwuerschmidt adds 6144/6125 = |11 1 -3 -2&amp;gt;.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:2:&amp;lt;h3&amp;gt; --&gt;&lt;h3 id="toc1"&gt;&lt;a name="x-Seven limit children-Wurschmidt"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:2 --&gt;Wurschmidt&lt;/h3&gt;
&lt;!-- ws:start:WikiTextHeadingRule:4:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc2"&gt;&lt;a name="Wurschmidt"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:4 --&gt;Wurschmidt&lt;/h1&gt;
Wurschmidt, aside from the commas listed above, also tempers out 225/224. &lt;a class="wiki_link" href="/31edo"&gt;31edo&lt;/a&gt; or &lt;a class="wiki_link" href="/127edo"&gt;127edo&lt;/a&gt; can be used as tunings. Wurschmidt has &amp;lt;&amp;lt;8 1 18 -17 6 39|| for a wedgie. It extends naturally to an 11-limit version &amp;lt;&amp;lt;8 1 18 20 ,,,|| which also tempers out 99/98, 176/175 and 243/242. &lt;a class="wiki_link" href="/127edo"&gt;127edo&lt;/a&gt; is again an excellent tuning for 11-limit wurschmidt, as well as for minerva, the 11-limit rank three temperament tempering out 99/98 and 176/175.&lt;br /&gt;
Wurschmidt, aside from the commas listed above, also tempers out 225/224. &lt;a class="wiki_link" href="/31edo"&gt;31edo&lt;/a&gt; or &lt;a class="wiki_link" href="/127edo"&gt;127edo&lt;/a&gt; can be used as tunings. Wurschmidt has &amp;lt;&amp;lt;8 1 18 -17 6 39|| for a wedgie. It extends naturally to an 11-limit version &amp;lt;&amp;lt;8 1 18 20 ,,,|| which also tempers out 99/98, 176/175 and 243/242. &lt;a class="wiki_link" href="/127edo"&gt;127edo&lt;/a&gt; is again an excellent tuning for 11-limit wurschmidt, as well as for minerva, the 11-limit rank three temperament tempering out 99/98 and 176/175.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
Line 83: Line 89:
EDOs: 31, 127&lt;br /&gt;
EDOs: 31, 127&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:4:&amp;lt;h3&amp;gt; --&gt;&lt;h3 id="toc2"&gt;&lt;a name="x-Seven limit children-Worschmidt"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:4 --&gt;Worschmidt&lt;/h3&gt;
&lt;!-- ws:start:WikiTextHeadingRule:6:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc3"&gt;&lt;a name="Worschmidt"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:6 --&gt;Worschmidt&lt;/h1&gt;
Worschmidt tempers out 126/125 rather than 225/224, and can use &lt;a class="wiki_link" href="/31edo"&gt;31edo&lt;/a&gt;, &lt;a class="wiki_link" href="/34edo"&gt;34edo&lt;/a&gt;, or &lt;a class="wiki_link" href="/127edo"&gt;127edo&lt;/a&gt; as a tuning. If 127 is used, note that the val is &amp;lt;127 201 295 356| and not &amp;lt;127 201 295 357| as with wurschmidt. The wedgie now is &amp;lt;&amp;lt;8 1 -13 -17 -43 -33|. In practice, of course, both mappings could be used ambiguously, which might be an interesting avenue for someone to explore. &lt;br /&gt;
Worschmidt tempers out 126/125 rather than 225/224, and can use &lt;a class="wiki_link" href="/31edo"&gt;31edo&lt;/a&gt;, &lt;a class="wiki_link" href="/34edo"&gt;34edo&lt;/a&gt;, or &lt;a class="wiki_link" href="/127edo"&gt;127edo&lt;/a&gt; as a tuning. If 127 is used, note that the val is &amp;lt;127 201 295 356| and not &amp;lt;127 201 295 357| as with wurschmidt. The wedgie now is &amp;lt;&amp;lt;8 1 -13 -17 -43 -33|. In practice, of course, both mappings could be used ambiguously, which might be an interesting avenue for someone to explore. &lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
Line 94: Line 100:
EDOs: 31, 127&lt;br /&gt;
EDOs: 31, 127&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:6:&amp;lt;h3&amp;gt; --&gt;&lt;h3 id="toc3"&gt;&lt;a name="x-Seven limit children-Whirrschmidt"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:6 --&gt;Whirrschmidt&lt;/h3&gt;
&lt;!-- ws:start:WikiTextHeadingRule:8:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc4"&gt;&lt;a name="Whirrschmidt"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:8 --&gt;Whirrschmidt&lt;/h1&gt;
&lt;a class="wiki_link" href="/99edo"&gt;99edo&lt;/a&gt; is such a good tuning for whirrschimdt that we hardly need look any farther. Unfortunately, the temperament while accurate is complex, with &amp;lt;&amp;lt;8 1 52 -17 60 118|| for a wedgie.&lt;br /&gt;
&lt;a class="wiki_link" href="/99edo"&gt;99edo&lt;/a&gt; is such a good tuning for whirrschimdt that we hardly need look any farther. Unfortunately, the temperament while accurate is complex, with &amp;lt;&amp;lt;8 1 52 -17 60 118|| for a wedgie.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
Line 105: Line 111:
EDOs: 31, 34, 99&lt;br /&gt;
EDOs: 31, 34, 99&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:8:&amp;lt;h3&amp;gt; --&gt;&lt;h3 id="toc4"&gt;&lt;a name="x-Seven limit children-Hemiwuerschmift"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:8 --&gt;Hemiwuerschmift&lt;/h3&gt;
&lt;!-- ws:start:WikiTextHeadingRule:10:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc5"&gt;&lt;a name="Hemiwuerschmift"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:10 --&gt;Hemiwuerschmift&lt;/h1&gt;
Hemiwuerschmidt, which splits the major third in two and uses that for a generator, is the most important of these temperaments even with the rather large complexity for the fifth. It tempers out 3136/3125, 6144/6125 and 2401/2400. &lt;a class="wiki_link" href="/68edo"&gt;68edo&lt;/a&gt;, &lt;a class="wiki_link" href="/99edo"&gt;99edo&lt;/a&gt; and &lt;a class="wiki_link" href="/130edo"&gt;130edo&lt;/a&gt; can all be used as tunings, but 130 is not only the most accurate, it shows how hemiwuerschmidt extends to a higher limit temperament, &amp;lt;&amp;lt;16 2 5 40 -39 -49 -48 28...&lt;br /&gt;
Hemiwuerschmidt, which splits the major third in two and uses that for a generator, is the most important of these temperaments even with the rather large complexity for the fifth. It tempers out 3136/3125, 6144/6125 and 2401/2400. &lt;a class="wiki_link" href="/68edo"&gt;68edo&lt;/a&gt;, &lt;a class="wiki_link" href="/99edo"&gt;99edo&lt;/a&gt; and &lt;a class="wiki_link" href="/130edo"&gt;130edo&lt;/a&gt; can all be used as tunings, but 130 is not only the most accurate, it shows how hemiwuerschmidt extends to a higher limit temperament, &amp;lt;&amp;lt;16 2 5 40 -39 -49 -48 28...&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;