Würschmidt family: Difference between revisions

Wikispaces>genewardsmith
**Imported revision 211898008 - Original comment: **
Wikispaces>genewardsmith
**Imported revision 211898060 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2011-03-18 18:26:22 UTC</tt>.<br>
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2011-03-18 18:26:38 UTC</tt>.<br>
: The original revision id was <tt>211898008</tt>.<br>
: The original revision id was <tt>211898060</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
Line 8: Line 8:
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">[[toc|flat]]
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">[[toc|flat]]


=Wuerschmit=
=Wuerschmidt=
The 5-limit parent comma for the wuerschmidt family is 393216/390625, known as Wuerschmidt's comma. Its monzo is |17 1 -8&gt;, and flipping that yields &lt;&lt;8 1 -17|| for the wedgie. This tells us the generator is a major third, and that to get to the interval class of fifths will require eight of these. In fact, (5/4)^8 * 393216/390625 = 6. 14/53 or 21/65 are excellent generators, though 9/34 also makes sense and using 19edo is possible. Other tunings include 72edo, 87edo, 140edo and 164edo. Another tuning solution is to sharpen the major third by 1/8th of a Wuerschmift comma, which is to say by 1.43 cents, and thereby achieve pure fifths; this is the minimax tuning. Wuerschmidt is well-supplied with MOS scales, with 10, 13, 16, 19, 22, 25, 28 31 and 34 note MOS all possibilities.
The 5-limit parent comma for the wuerschmidt family is 393216/390625, known as Wuerschmidt's comma. Its monzo is |17 1 -8&gt;, and flipping that yields &lt;&lt;8 1 -17|| for the wedgie. This tells us the generator is a major third, and that to get to the interval class of fifths will require eight of these. In fact, (5/4)^8 * 393216/390625 = 6. 14/53 or 21/65 are excellent generators, though 9/34 also makes sense and using 19edo is possible. Other tunings include 72edo, 87edo, 140edo and 164edo. Another tuning solution is to sharpen the major third by 1/8th of a Wuerschmift comma, which is to say by 1.43 cents, and thereby achieve pure fifths; this is the minimax tuning. Wuerschmidt is well-supplied with MOS scales, with 10, 13, 16, 19, 22, 25, 28 31 and 34 note MOS all possibilities.


Line 64: Line 64:
EDOs: 31, 99, 229</pre></div>
EDOs: 31, 99, 229</pre></div>
<h4>Original HTML content:</h4>
<h4>Original HTML content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;Würschmidt family&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;!-- ws:start:WikiTextTocRule:12:&amp;lt;img id=&amp;quot;wikitext@@toc@@flat&amp;quot; class=&amp;quot;WikiMedia WikiMediaTocFlat&amp;quot; title=&amp;quot;Table of Contents&amp;quot; src=&amp;quot;/site/embedthumbnail/toc/flat?w=100&amp;amp;h=16&amp;quot;/&amp;gt; --&gt;&lt;!-- ws:end:WikiTextTocRule:12 --&gt;&lt;!-- ws:start:WikiTextTocRule:13: --&gt;&lt;a href="#Wuerschmit"&gt;Wuerschmit&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:13 --&gt;&lt;!-- ws:start:WikiTextTocRule:14: --&gt;&lt;!-- ws:end:WikiTextTocRule:14 --&gt;&lt;!-- ws:start:WikiTextTocRule:15: --&gt; | &lt;a href="#Wurschmidt"&gt;Wurschmidt&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:15 --&gt;&lt;!-- ws:start:WikiTextTocRule:16: --&gt; | &lt;a href="#Worschmidt"&gt;Worschmidt&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:16 --&gt;&lt;!-- ws:start:WikiTextTocRule:17: --&gt; | &lt;a href="#Whirrschmidt"&gt;Whirrschmidt&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:17 --&gt;&lt;!-- ws:start:WikiTextTocRule:18: --&gt; | &lt;a href="#Hemiwuerschmift"&gt;Hemiwuerschmift&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:18 --&gt;&lt;!-- ws:start:WikiTextTocRule:19: --&gt;
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;Würschmidt family&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;!-- ws:start:WikiTextTocRule:12:&amp;lt;img id=&amp;quot;wikitext@@toc@@flat&amp;quot; class=&amp;quot;WikiMedia WikiMediaTocFlat&amp;quot; title=&amp;quot;Table of Contents&amp;quot; src=&amp;quot;/site/embedthumbnail/toc/flat?w=100&amp;amp;h=16&amp;quot;/&amp;gt; --&gt;&lt;!-- ws:end:WikiTextTocRule:12 --&gt;&lt;!-- ws:start:WikiTextTocRule:13: --&gt;&lt;a href="#Wuerschmidt"&gt;Wuerschmidt&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:13 --&gt;&lt;!-- ws:start:WikiTextTocRule:14: --&gt;&lt;!-- ws:end:WikiTextTocRule:14 --&gt;&lt;!-- ws:start:WikiTextTocRule:15: --&gt; | &lt;a href="#Wurschmidt"&gt;Wurschmidt&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:15 --&gt;&lt;!-- ws:start:WikiTextTocRule:16: --&gt; | &lt;a href="#Worschmidt"&gt;Worschmidt&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:16 --&gt;&lt;!-- ws:start:WikiTextTocRule:17: --&gt; | &lt;a href="#Whirrschmidt"&gt;Whirrschmidt&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:17 --&gt;&lt;!-- ws:start:WikiTextTocRule:18: --&gt; | &lt;a href="#Hemiwuerschmift"&gt;Hemiwuerschmift&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:18 --&gt;&lt;!-- ws:start:WikiTextTocRule:19: --&gt;
&lt;!-- ws:end:WikiTextTocRule:19 --&gt;&lt;br /&gt;
&lt;!-- ws:end:WikiTextTocRule:19 --&gt;&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc0"&gt;&lt;a name="Wuerschmit"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt;Wuerschmit&lt;/h1&gt;
&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc0"&gt;&lt;a name="Wuerschmidt"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt;Wuerschmidt&lt;/h1&gt;
The 5-limit parent comma for the wuerschmidt family is 393216/390625, known as Wuerschmidt's comma. Its monzo is |17 1 -8&amp;gt;, and flipping that yields &amp;lt;&amp;lt;8 1 -17|| for the wedgie. This tells us the generator is a major third, and that to get to the interval class of fifths will require eight of these. In fact, (5/4)^8 * 393216/390625 = 6. 14/53 or 21/65 are excellent generators, though 9/34 also makes sense and using 19edo is possible. Other tunings include 72edo, 87edo, 140edo and 164edo. Another tuning solution is to sharpen the major third by 1/8th of a Wuerschmift comma, which is to say by 1.43 cents, and thereby achieve pure fifths; this is the minimax tuning. Wuerschmidt is well-supplied with MOS scales, with 10, 13, 16, 19, 22, 25, 28 31 and 34 note MOS all possibilities.&lt;br /&gt;
The 5-limit parent comma for the wuerschmidt family is 393216/390625, known as Wuerschmidt's comma. Its monzo is |17 1 -8&amp;gt;, and flipping that yields &amp;lt;&amp;lt;8 1 -17|| for the wedgie. This tells us the generator is a major third, and that to get to the interval class of fifths will require eight of these. In fact, (5/4)^8 * 393216/390625 = 6. 14/53 or 21/65 are excellent generators, though 9/34 also makes sense and using 19edo is possible. Other tunings include 72edo, 87edo, 140edo and 164edo. Another tuning solution is to sharpen the major third by 1/8th of a Wuerschmift comma, which is to say by 1.43 cents, and thereby achieve pure fifths; this is the minimax tuning. Wuerschmidt is well-supplied with MOS scales, with 10, 13, 16, 19, 22, 25, 28 31 and 34 note MOS all possibilities.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
Line 75: Line 75:
EDOs: 31, 34, 65, 164&lt;br /&gt;
EDOs: 31, 34, 65, 164&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:2:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc1"&gt;&lt;a name="Wuerschmit-Seven limit children"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:2 --&gt;Seven limit children&lt;/h2&gt;
&lt;!-- ws:start:WikiTextHeadingRule:2:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc1"&gt;&lt;a name="Wuerschmidt-Seven limit children"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:2 --&gt;Seven limit children&lt;/h2&gt;
The second comma of the &lt;a class="wiki_link" href="/Normal%20lists"&gt;normal comma list&lt;/a&gt; defines which 7-limit family member we are looking at. Wurschmidt adds |12 3 -6 -1&amp;gt;, worschmidt adds 65625/65536 = |-16 1 5 1&amp;gt;, whirrschmidt adds 4375/4374 = |-1 -7 4 1&amp;gt; and hemiwuerschmidt adds 6144/6125 = |11 1 -3 -2&amp;gt;.&lt;br /&gt;
The second comma of the &lt;a class="wiki_link" href="/Normal%20lists"&gt;normal comma list&lt;/a&gt; defines which 7-limit family member we are looking at. Wurschmidt adds |12 3 -6 -1&amp;gt;, worschmidt adds 65625/65536 = |-16 1 5 1&amp;gt;, whirrschmidt adds 4375/4374 = |-1 -7 4 1&amp;gt; and hemiwuerschmidt adds 6144/6125 = |11 1 -3 -2&amp;gt;.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;