Würschmidt family: Difference between revisions
Wikispaces>genewardsmith **Imported revision 211898060 - Original comment: ** |
Wikispaces>genewardsmith **Imported revision 233912702 - Original comment: ** |
||
Line 1: | Line 1: | ||
<h2>IMPORTED REVISION FROM WIKISPACES</h2> | <h2>IMPORTED REVISION FROM WIKISPACES</h2> | ||
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | ||
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2011- | : This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2011-06-02 18:38:54 UTC</tt>.<br> | ||
: The original revision id was <tt> | : The original revision id was <tt>233912702</tt>.<br> | ||
: The revision comment was: <tt></tt><br> | : The revision comment was: <tt></tt><br> | ||
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | ||
Line 9: | Line 9: | ||
=Wuerschmidt= | =Wuerschmidt= | ||
The 5-limit parent comma for the wuerschmidt family is 393216/390625, known as Wuerschmidt's comma. Its monzo is |17 1 -8>, and flipping that yields <<8 1 | The 5-limit parent comma for the wuerschmidt family is 393216/390625, known as Wuerschmidt's comma. Its monzo is |17 1 -8>, and flipping that yields <<8 1 17|| for the wedgie. This tells us the generator is a major third, and that to get to the interval class of fifths will require eight of these. In fact, (5/4)^8 * 393216/390625 = 6. 14/53 or 21/65 are excellent generators, though 9/34 also makes sense and using 19edo is possible. Other tunings include 72edo, 87edo, 140edo and 164edo. Another tuning solution is to sharpen the major third by 1/8th of a Wuerschmift comma, which is to say by 1.43 cents, and thereby achieve pure fifths; this is the minimax tuning. Wuerschmidt is well-supplied with MOS scales, with 10, 13, 16, 19, 22, 25, 28 31 and 34 note MOS all possibilities. | ||
[[POTE tuning|POTE generator]]: 387.799 | [[POTE tuning|POTE generator]]: 387.799 | ||
Line 67: | Line 67: | ||
<!-- ws:end:WikiTextTocRule:19 --><br /> | <!-- ws:end:WikiTextTocRule:19 --><br /> | ||
<!-- ws:start:WikiTextHeadingRule:0:&lt;h1&gt; --><h1 id="toc0"><a name="Wuerschmidt"></a><!-- ws:end:WikiTextHeadingRule:0 -->Wuerschmidt</h1> | <!-- ws:start:WikiTextHeadingRule:0:&lt;h1&gt; --><h1 id="toc0"><a name="Wuerschmidt"></a><!-- ws:end:WikiTextHeadingRule:0 -->Wuerschmidt</h1> | ||
The 5-limit parent comma for the wuerschmidt family is 393216/390625, known as Wuerschmidt's comma. Its monzo is |17 1 -8&gt;, and flipping that yields &lt;&lt;8 1 | The 5-limit parent comma for the wuerschmidt family is 393216/390625, known as Wuerschmidt's comma. Its monzo is |17 1 -8&gt;, and flipping that yields &lt;&lt;8 1 17|| for the wedgie. This tells us the generator is a major third, and that to get to the interval class of fifths will require eight of these. In fact, (5/4)^8 * 393216/390625 = 6. 14/53 or 21/65 are excellent generators, though 9/34 also makes sense and using 19edo is possible. Other tunings include 72edo, 87edo, 140edo and 164edo. Another tuning solution is to sharpen the major third by 1/8th of a Wuerschmift comma, which is to say by 1.43 cents, and thereby achieve pure fifths; this is the minimax tuning. Wuerschmidt is well-supplied with MOS scales, with 10, 13, 16, 19, 22, 25, 28 31 and 34 note MOS all possibilities.<br /> | ||
<br /> | <br /> | ||
<a class="wiki_link" href="/POTE%20tuning">POTE generator</a>: 387.799<br /> | <a class="wiki_link" href="/POTE%20tuning">POTE generator</a>: 387.799<br /> |