Kite's ups and downs notation: Difference between revisions

Wikispaces>TallKite
**Imported revision 584789887 - Original comment: **
Wikispaces>TallKite
**Imported revision 584790759 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:TallKite|TallKite]] and made on <tt>2016-06-04 07:12:29 UTC</tt>.<br>
: This revision was by author [[User:TallKite|TallKite]] and made on <tt>2016-06-04 08:03:44 UTC</tt>.<br>
: The original revision id was <tt>584789887</tt>.<br>
: The original revision id was <tt>584790759</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
Line 915: Line 915:
|| genspan from C || 0 || 1 || 2 || 3 || 4 || 5 || 6 || 7 || 8 || 9 || 10 || 11 || 12 ||
|| genspan from C || 0 || 1 || 2 || 3 || 4 || 5 || 6 || 7 || 8 || 9 || 10 || 11 || 12 ||
|| 12-tone keyspan from C || 0 || 7 || 2 || 9 || 4 || 11 || 6 || 1 || 8 || 3 || 10 || 5 || 0 ||
|| 12-tone keyspan from C || 0 || 7 || 2 || 9 || 4 || 11 || 6 || 1 || 8 || 3 || 10 || 5 || 0 ||
|| 29-tone || 0 || 17 || 5 || 22 || 10 || 27 || 15 || 3 || 8 ||  ||  ||  ||  ||
B#, genspan 12, has a zero keyspan, as does Dbb, genspan -12, and A###, genspan 24. Thus the final equation means that the genspan resulting from going up a sharp and down X downs must be zero, N, -N, 2N, -2N, etc. Thus this genspan mod N must be zero.
B#, genspan 12, has a zero keyspan, as does Dbb, genspan -12, and A###, genspan 24. Thus the final equation means that the genspan resulting from going up a sharp and down X downs must be zero, N, -N, 2N, -2N, etc. Thus this genspan mod N must be zero.


Line 924: Line 923:
G(^) = - (i * N - 7) / X
G(^) = - (i * N - 7) / X


For 22-tone, X = 3 and N = 22. We choose i to be the smallest (least absolute value) number that avoids fractions. Thus i = 1, G(^) = -5, and ^ = min 2nd. In order to provide alternate names for each note, the ^ should always be a 2nd. However as we'll see, this isn't always possible.
For 22-tone, X = 3 and N = 22. We choose i to be the smallest (least absolute value) number that avoids fractions, and
produces an interval with a keyspan of 1. Thus i = 1, G(^) = -5, and ^ = min 2nd. In order to provide alternate names for each note, the ^ should always be a 2nd. However as we'll see, this isn't always possible.


The other relevant frameworks of size 53 or less:
The other relevant frameworks of size 53 or less:
Line 943: Line 943:
||= 45-tone ||= 2 ||= 1 ||= -19 || &lt;span style="display: block; text-align: center;"&gt;C^ = Dbbb
||= 45-tone ||= 2 ||= 1 ||= -19 || &lt;span style="display: block; text-align: center;"&gt;C^ = Dbbb
&lt;/span&gt; ||= double-dim 2nd ||
&lt;/span&gt; ||= double-dim 2nd ||
||= 49-tone ||= 7 ||= 0, 1, -1 ||= 1, -6, 8 ||= C^ = G, C^ = Gb, C^ = G# ||= perf 5th, dim 5th, aug 5th ||
||= 49-tone ||= 7 ||= -3 ||= +22 ||= C^ = G### ||= desc triple-dim 4th ||
||= 50-tone ||= 3 ||= -1 ||= +19 ||= C^ = Bx ||= desc double-dim 2nd ||
||= 50-tone ||= 3 ||= -1 ||= +19 ||= C^ = Bx ||= desc double-dim 2nd ||
||= 53-tone ||= 5 ||= -1 ||= +12 ||= C^ = B# ||= desc dim 2nd ||
||= 53-tone ||= 5 ||= -1 ||= +12 ||= C^ = B# ||= desc dim 2nd ||
The value of i equals the stepspan of the up, except in the case of 49-tone. A look at the scale fragments reveals why 29-tone has a negative i:
The value of i equals the stepspan of the up interval. A look at the scale fragments reveals why 29-tone has a negative i:


17-tone: C Db C# D
17-tone: C Db C# D
Line 953: Line 953:
29-tone: C * Db C# * D
29-tone: C * Db C# * D


The 17-tone, 22-tone and 27-tone frameworks all have Db adjacent to C, so that C^ equals Db. For 29-tone, Db = C^^. To find a D-something that is adjacent to C, we must use Dbb, which is one key __below__ C. Thus Cv = Dbb, and C^ = B#, and ^ is a descending dim 2nd. In 41-tone, 50-tone and 53-tone, the up is also a descending 2nd.
The 17-tone, 22-tone and 27-tone frameworks all have Db adjacent to C, so that C^ equals Db. For 29-tone, Db = C^^. To find a D-something that is adjacent to C, we must use Dbb, which is one key __below__ C. Thus Cv = Dbb, and C^ = B#, and ^ is a descending dim 2nd. In 41-tone, 50-tone and 53-tone, the up is also a descending 2nd. The descending nature is not an issue, as the following charts show.


The 29-tone genchain:
The 29-tone genchain:
Line 1,022: Line 1,022:
||= 28 ||= -12 ||= Cv ||= +17 ||= B^ ||
||= 28 ||= -12 ||= Cv ||= +17 ||= B^ ||
||= 29 ||= 0 ||= C ||=  ||=  ||
||= 29 ||= 0 ||= C ||=  ||=  ||




Line 1,029: Line 1,028:
49-tone: C * Db * * * * C# * D
49-tone: C * Db * * * * C# * D


There is no variant of D adjacent to C, and there is no 2nd with keyspan 1 or -1. Some other method of notation must be used for these two frameworks.</pre></div>
There is no variant of D adjacent to C, and there is no 2nd with keyspan 1 or -1. Some other method of notation must be used for these two frameworks.
 
== ==
==__Generators other than a fifth__==
 
Porcupine in 22-tone is generated by a 2nd = 3\22:
Genchain: A# B# C# D# E# F# G# A B C D E F G Ab Bb Cb Db Eb Fb Gb
Scale fragment: D D# Eb E
Keyboard: D * * E * * F * * G * * * A * * B * * C * * D
Because K(#) = 1, ups and downs aren't needed.
 
 
The 22-tone porcupine genchain:
||= genspan from D ||= 22-tone keyspan from D ||  ||
||= -13 ||= 5 || Ex ||
||= -12 ||= 8 || Fx ||
||= -11 ||= 11 || Gx ||
||= -10 ||= 14 || A# ||
||= -9 ||= 17 || B# ||
||= -8 ||= 20 || C# ||
||= -7 ||= 1 || D# ||
||= -6 ||= 4 || E# ||
||= -5 ||= 7 || F# ||
||= -4 ||= 10 || G# ||
||= -3 ||= 13 || A ||
||= -2 ||= 16 || B ||
||= -1 ||= 19 || C ||
||= 0 ||= 0 || D ||
||= 1 ||= 3 || E ||
||= 2 ||= 6 || F ||
||= 3 ||= 9 || G ||
||= 4 ||= 12 || Ab ||
||= 5 ||= 15 || Bb ||
||= 6 ||= 18 || Cb ||
||= 7 ||= 21 || Db ||
||= 8 ||= 2 || Eb ||
||= 9 ||= 5 || Fb ||
||= 10 ||= 8 || Gb ||
||= 11 ||= 11 || Abb ||
||= 12 ||= 14 || Bbb ||
||= 13 ||= 17 || Cbb ||
||= 14 ||= 20 || Dbb ||
||= 15 ||= 1 || Ebb ||
||= 16 ||= 4 || Fbb ||
||= 17 ||= 7 || Gbb ||
||=  ||= etc. ||  ||
 
Each of the 22 keys, with alternate tunings for the black keys:
||= keyspan from D ||= genspan from D ||= note ||= genspan from D ||= note ||
||= 0 ||= 0 ||= D ||=  ||=  ||
||= 1 ||= -7 ||= D# ||= +15 ||= Ebb ||
||= 2 ||= -10 ||= Eb ||= +12 ||= Dx ||
||= 3 ||= -15 ||= E ||=  ||=  ||
||= 4 ||= +2 ||= D ||=  ||=  ||
||= 5 ||= -3 ||= Eb = D^ ||= +19 ||= D#vv = Ev3 ||
||= 6 ||= -8 ||= Eb^ = D^^ ||= +14 ||= D#v = Evv ||
||= 7 ||= -13 ||= Eb^^ = D^3 ||= +9 ||= D# = Ev ||
||= 8 ||= +4 ||= E ||=  ||=  ||
||= 9 ||= -1 ||= F ||=  ||=  ||
||= 10 ||= -6 ||= Gb = F^ ||= +16 ||= F#vv = Gv3 ||
||= 11 ||= -11 ||= Gb^ = F^^ ||= +11 ||= F#v = Gvv ||
||= 12 ||= -16 ||= Gb^^ = F^3 ||= +6 ||= F# = Gv ||
||= 13 ||= +1 ||= G ||=  ||=  ||
||= 14 ||= -4 ||= Ab = G^ ||= +18 ||= G#vv = Av3 ||
||= 15 ||= -9 ||= Ab^ = G^^ ||= +13 ||= G#v = Avv ||
||= 16 ||= -14 ||= Ab^^ = G^3 ||= +8 ||= G# = Av ||
||= 17 ||= +3 ||= A ||=  ||=  ||
||= 18 ||= -2 ||= Bb = A^ ||= +20 ||= A#vv = Bv3 ||
||= 19 ||= -7 ||= Bb^ = A^^ ||= +15 ||= A#v = Bvv ||
||= 20 ||= -12 ||= Bb^^ = A^3 ||= +10 ||= A# = Bv ||
||= 21 ||= +5 ||= B ||=  ||=  ||
||= 22 ||= 0 ||= C ||=  ||=  ||
 
P</pre></div>
<h4>Original HTML content:</h4>
<h4>Original HTML content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;Ups and Downs Notation&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc0"&gt;&lt;a name="x&amp;quot;Ups and Downs&amp;quot; Notation"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt;&amp;quot;Ups and Downs&amp;quot; Notation&lt;/h1&gt;
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;Ups and Downs Notation&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc0"&gt;&lt;a name="x&amp;quot;Ups and Downs&amp;quot; Notation"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt;&amp;quot;Ups and Downs&amp;quot; Notation&lt;/h1&gt;
Line 1,121: Line 1,193:
fourthwards EDOs aka Mavila EDOs, with a fifth less than 686¢&lt;br /&gt;
fourthwards EDOs aka Mavila EDOs, with a fifth less than 686¢&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextLocalImageRule:3456:&amp;lt;img src=&amp;quot;/file/view/The%20fifth%20of%20EDOs%205-53.png/570450231/800x1035/The%20fifth%20of%20EDOs%205-53.png&amp;quot; alt=&amp;quot;&amp;quot; title=&amp;quot;&amp;quot; style=&amp;quot;height: 1035px; width: 800px;&amp;quot; /&amp;gt; --&gt;&lt;img src="/file/view/The%20fifth%20of%20EDOs%205-53.png/570450231/800x1035/The%20fifth%20of%20EDOs%205-53.png" alt="The fifth of EDOs 5-53.png" title="The fifth of EDOs 5-53.png" style="height: 1035px; width: 800px;" /&gt;&lt;!-- ws:end:WikiTextLocalImageRule:3456 --&gt;&lt;br /&gt;
&lt;!-- ws:start:WikiTextLocalImageRule:3986:&amp;lt;img src=&amp;quot;/file/view/The%20fifth%20of%20EDOs%205-53.png/570450231/800x1035/The%20fifth%20of%20EDOs%205-53.png&amp;quot; alt=&amp;quot;&amp;quot; title=&amp;quot;&amp;quot; style=&amp;quot;height: 1035px; width: 800px;&amp;quot; /&amp;gt; --&gt;&lt;img src="/file/view/The%20fifth%20of%20EDOs%205-53.png/570450231/800x1035/The%20fifth%20of%20EDOs%205-53.png" alt="The fifth of EDOs 5-53.png" title="The fifth of EDOs 5-53.png" style="height: 1035px; width: 800px;" /&gt;&lt;!-- ws:end:WikiTextLocalImageRule:3986 --&gt;&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
This is in addition to the trivial EDOs, 1, 2, 3, 4 and 6, which can be notated with standard notation as a subset of 12-EDO. The fifth is defined as the nearest approximation to 3/2. There is a little leeway to this in certain EDOs like 18 which have two possible fifths with nearly equal accuracy.&lt;br /&gt;
This is in addition to the trivial EDOs, 1, 2, 3, 4 and 6, which can be notated with standard notation as a subset of 12-EDO. The fifth is defined as the nearest approximation to 3/2. There is a little leeway to this in certain EDOs like 18 which have two possible fifths with nearly equal accuracy.&lt;br /&gt;
Line 1,337: Line 1,409:
&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextLocalImageRule:3457:&amp;lt;img src=&amp;quot;/file/view/Tibia%20in%20G%20with%20%5Ev%2C%20rygb%201.jpg/570451171/800x1035/Tibia%20in%20G%20with%20%5Ev%2C%20rygb%201.jpg&amp;quot; alt=&amp;quot;&amp;quot; title=&amp;quot;&amp;quot; style=&amp;quot;height: 1035px; width: 800px;&amp;quot; /&amp;gt; --&gt;&lt;img src="/file/view/Tibia%20in%20G%20with%20%5Ev%2C%20rygb%201.jpg/570451171/800x1035/Tibia%20in%20G%20with%20%5Ev%2C%20rygb%201.jpg" alt="Tibia in G with ^v, rygb 1.jpg" title="Tibia in G with ^v, rygb 1.jpg" style="height: 1035px; width: 800px;" /&gt;&lt;!-- ws:end:WikiTextLocalImageRule:3457 --&gt;&lt;br /&gt;
&lt;!-- ws:start:WikiTextLocalImageRule:3987:&amp;lt;img src=&amp;quot;/file/view/Tibia%20in%20G%20with%20%5Ev%2C%20rygb%201.jpg/570451171/800x1035/Tibia%20in%20G%20with%20%5Ev%2C%20rygb%201.jpg&amp;quot; alt=&amp;quot;&amp;quot; title=&amp;quot;&amp;quot; style=&amp;quot;height: 1035px; width: 800px;&amp;quot; /&amp;gt; --&gt;&lt;img src="/file/view/Tibia%20in%20G%20with%20%5Ev%2C%20rygb%201.jpg/570451171/800x1035/Tibia%20in%20G%20with%20%5Ev%2C%20rygb%201.jpg" alt="Tibia in G with ^v, rygb 1.jpg" title="Tibia in G with ^v, rygb 1.jpg" style="height: 1035px; width: 800px;" /&gt;&lt;!-- ws:end:WikiTextLocalImageRule:3987 --&gt;&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:6:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc3"&gt;&lt;!-- ws:end:WikiTextHeadingRule:6 --&gt;&lt;!-- ws:start:WikiTextLocalImageRule:3458:&amp;lt;img src=&amp;quot;/file/view/Tibia%20in%20G%20with%20%5Ev%2C%20rygb%202.jpg/570451199/800x957/Tibia%20in%20G%20with%20%5Ev%2C%20rygb%202.jpg&amp;quot; alt=&amp;quot;&amp;quot; title=&amp;quot;&amp;quot; style=&amp;quot;height: 957px; width: 800px;&amp;quot; /&amp;gt; --&gt;&lt;img src="/file/view/Tibia%20in%20G%20with%20%5Ev%2C%20rygb%202.jpg/570451199/800x957/Tibia%20in%20G%20with%20%5Ev%2C%20rygb%202.jpg" alt="Tibia in G with ^v, rygb 2.jpg" title="Tibia in G with ^v, rygb 2.jpg" style="height: 957px; width: 800px;" /&gt;&lt;!-- ws:end:WikiTextLocalImageRule:3458 --&gt;&lt;/h2&gt;
&lt;!-- ws:start:WikiTextHeadingRule:6:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc3"&gt;&lt;!-- ws:end:WikiTextHeadingRule:6 --&gt;&lt;!-- ws:start:WikiTextLocalImageRule:3988:&amp;lt;img src=&amp;quot;/file/view/Tibia%20in%20G%20with%20%5Ev%2C%20rygb%202.jpg/570451199/800x957/Tibia%20in%20G%20with%20%5Ev%2C%20rygb%202.jpg&amp;quot; alt=&amp;quot;&amp;quot; title=&amp;quot;&amp;quot; style=&amp;quot;height: 957px; width: 800px;&amp;quot; /&amp;gt; --&gt;&lt;img src="/file/view/Tibia%20in%20G%20with%20%5Ev%2C%20rygb%202.jpg/570451199/800x957/Tibia%20in%20G%20with%20%5Ev%2C%20rygb%202.jpg" alt="Tibia in G with ^v, rygb 2.jpg" title="Tibia in G with ^v, rygb 2.jpg" style="height: 957px; width: 800px;" /&gt;&lt;!-- ws:end:WikiTextLocalImageRule:3988 --&gt;&lt;/h2&gt;
  &lt;!-- ws:start:WikiTextHeadingRule:8:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc4"&gt;&lt;!-- ws:end:WikiTextHeadingRule:8 --&gt; &lt;/h2&gt;
  &lt;!-- ws:start:WikiTextHeadingRule:8:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc4"&gt;&lt;!-- ws:end:WikiTextHeadingRule:8 --&gt; &lt;/h2&gt;
  &lt;!-- ws:start:WikiTextHeadingRule:10:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc5"&gt;&lt;!-- ws:end:WikiTextHeadingRule:10 --&gt; &lt;/h2&gt;
  &lt;!-- ws:start:WikiTextHeadingRule:10:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc5"&gt;&lt;!-- ws:end:WikiTextHeadingRule:10 --&gt; &lt;/h2&gt;
Line 4,100: Line 4,172:
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
&lt;/table&gt;
B#, genspan 12, has a zero keyspan, as does Dbb, genspan -12, and A###, genspan 24. Thus the final equation means that the genspan resulting from going up a sharp and down X downs must be zero, N, -N, 2N, -2N, etc. Thus this genspan mod N must be zero.&lt;br /&gt;
&lt;br /&gt;
G(#) = 7 (by definition, the sharp's genspan = 7, since we're assuming heptatonic notation)&lt;br /&gt;
G(#vX) = G(#) + X * G(v) = G(#) - X * G(^) = 7 - X * G(^)&lt;br /&gt;
G(#vX) mod N = 0, thus G(#vX) = i * N for some integer i&lt;br /&gt;
7 - X * G(^) = i * N&lt;br /&gt;
G(^) = - (i * N - 7) / X&lt;br /&gt;
&lt;br /&gt;
For 22-tone, X = 3 and N = 22. We choose i to be the smallest (least absolute value) number that avoids fractions, and&lt;br /&gt;
produces an interval with a keyspan of 1. Thus i = 1, G(^) = -5, and ^ = min 2nd. In order to provide alternate names for each note, the ^ should always be a 2nd. However as we'll see, this isn't always possible.&lt;br /&gt;
&lt;br /&gt;
The other relevant frameworks of size 53 or less:&lt;br /&gt;
&lt;br /&gt;
&lt;table class="wiki_table"&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;29-tone&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;0&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;Keyspan of #&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;17&lt;br /&gt;
         &lt;td&gt;value of i&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
        &lt;td&gt;5&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;genspan of ^&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;22&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;10&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;27&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;15&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;3&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
&lt;/table&gt;
 
B#, genspan 12, has a zero keyspan, as does Dbb, genspan -12, and A###, genspan 24. Thus the final equation means that the genspan resulting from going up a sharp and down X downs must be zero, N, -N, 2N, -2N, etc. Thus this genspan mod N must be zero.&lt;br /&gt;
&lt;br /&gt;
G(#) = 7 (by definition, the sharp's genspan = 7, since we're assuming heptatonic notation)&lt;br /&gt;
G(#vX) = G(#) + X * G(v) = G(#) - X * G(^) = 7 - X * G(^)&lt;br /&gt;
G(#vX) mod N = 0, thus G(#vX) = i * N for some integer i&lt;br /&gt;
7 - X * G(^) = i * N&lt;br /&gt;
G(^) = - (i * N - 7) / X&lt;br /&gt;
&lt;br /&gt;
For 22-tone, X = 3 and N = 22. We choose i to be the smallest (least absolute value) number that avoids fractions. Thus i = 1, G(^) = -5, and ^ = min 2nd. In order to provide alternate names for each note, the ^ should always be a 2nd. However as we'll see, this isn't always possible.&lt;br /&gt;
&lt;br /&gt;
The other relevant frameworks of size 53 or less:&lt;br /&gt;
&lt;br /&gt;
 
 
&lt;table class="wiki_table"&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;Keyspan of #&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;value of i&lt;br /&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;genspan of ^&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;example&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;example&lt;br /&gt;
Line 4,336: Line 4,379:
         &lt;td style="text-align: center;"&gt;7&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;7&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;0, 1, -1&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;-3&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;1, -6, 8&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;+22&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;C^ = G, C^ = Gb, C^ = G#&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;C^ = G###&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;perf 5th, dim 5th, aug 5th&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;desc triple-dim 4th&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 4,375: Line 4,418:
&lt;/table&gt;
&lt;/table&gt;


The value of i equals the stepspan of the up, except in the case of 49-tone. A look at the scale fragments reveals why 29-tone has a negative i:&lt;br /&gt;
The value of i equals the stepspan of the up interval. A look at the scale fragments reveals why 29-tone has a negative i:&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
17-tone: C Db C# D&lt;br /&gt;
17-tone: C Db C# D&lt;br /&gt;
Line 4,382: Line 4,425:
29-tone: C * Db C# * D&lt;br /&gt;
29-tone: C * Db C# * D&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
The 17-tone, 22-tone and 27-tone frameworks all have Db adjacent to C, so that C^ equals Db. For 29-tone, Db = C^^. To find a D-something that is adjacent to C, we must use Dbb, which is one key &lt;u&gt;below&lt;/u&gt; C. Thus Cv = Dbb, and C^ = B#, and ^ is a descending dim 2nd. In 41-tone, 50-tone and 53-tone, the up is also a descending 2nd.&lt;br /&gt;
The 17-tone, 22-tone and 27-tone frameworks all have Db adjacent to C, so that C^ equals Db. For 29-tone, Db = C^^. To find a D-something that is adjacent to C, we must use Dbb, which is one key &lt;u&gt;below&lt;/u&gt; C. Thus Cv = Dbb, and C^ = B#, and ^ is a descending dim 2nd. In 41-tone, 50-tone and 53-tone, the up is also a descending 2nd. The descending nature is not an issue, as the following charts show.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
The 29-tone genchain:&lt;br /&gt;
The 29-tone genchain:&lt;br /&gt;
Line 5,297: Line 5,340:
&lt;/table&gt;
&lt;/table&gt;


&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
Line 5,304: Line 5,346:
49-tone: C * Db * * * * C# * D&lt;br /&gt;
49-tone: C * Db * * * * C# * D&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
There is no variant of D adjacent to C, and there is no 2nd with keyspan 1 or -1. Some other method of notation must be used for these two frameworks.&lt;/body&gt;&lt;/html&gt;</pre></div>
There is no variant of D adjacent to C, and there is no 2nd with keyspan 1 or -1. Some other method of notation must be used for these two frameworks.&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:38:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc19"&gt;&lt;!-- ws:end:WikiTextHeadingRule:38 --&gt; &lt;/h2&gt;
&lt;!-- ws:start:WikiTextHeadingRule:40:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc20"&gt;&lt;a name="Summary of EDO notation-Generators other than a fifth"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:40 --&gt;&lt;u&gt;Generators other than a fifth&lt;/u&gt;&lt;/h2&gt;
&lt;br /&gt;
Porcupine in 22-tone is generated by a 2nd = 3\22:&lt;br /&gt;
Genchain: A# B# C# D# E# F# G# A B C D E F G Ab Bb Cb Db Eb Fb Gb&lt;br /&gt;
Scale fragment: D D# Eb E&lt;br /&gt;
Keyboard: D * * E * * F * * G * * * A * * B * * C * * D&lt;br /&gt;
Because K(#) = 1, ups and downs aren't needed.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
The 22-tone porcupine genchain:&lt;br /&gt;
 
 
&lt;table class="wiki_table"&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;genspan from D&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;22-tone keyspan from D&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;-13&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;5&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;Ex&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;-12&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;Fx&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;-11&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;Gx&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;-10&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;14&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;A#&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;-9&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;17&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;B#&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;-8&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;20&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;C#&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;-7&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;1&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;D#&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;-6&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;E#&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;-5&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;7&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;F#&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;-4&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;10&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;G#&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;-3&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;A&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;-2&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;16&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;B&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;-1&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;19&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;C&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;0&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;0&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;D&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;1&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;3&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;E&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;2&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;6&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;F&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;3&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;G&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;4&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;12&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;Ab&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;5&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;15&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;Bb&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;6&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;18&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;Cb&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;7&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;21&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;Db&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;8&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;2&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;Eb&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;9&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;5&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;Fb&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;10&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;Gb&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;11&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;Abb&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;12&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;14&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;Bbb&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;13&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;17&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;Cbb&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;14&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;20&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;Dbb&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;15&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;1&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;Ebb&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;16&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;Fbb&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;17&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;7&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;Gbb&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;etc.&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
&lt;/table&gt;
 
&lt;br /&gt;
Each of the 22 keys, with alternate tunings for the black keys:&lt;br /&gt;
 
 
&lt;table class="wiki_table"&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;keyspan from D&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;genspan from D&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;note&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;genspan from D&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;note&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;0&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;0&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;D&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;1&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;-7&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;D#&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;+15&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;Ebb&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;2&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;-10&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;Eb&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;+12&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;Dx&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;3&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;-15&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;E&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;4&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;+2&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;D&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;5&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;-3&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;Eb = D^&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;+19&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;D#vv = Ev3&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;6&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;-8&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;Eb^ = D^^&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;+14&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;D#v = Evv&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;7&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;-13&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;Eb^^ = D^3&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;+9&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;D# = Ev&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;8&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;+4&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;E&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;9&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;-1&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;F&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;10&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;-6&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;Gb = F^&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;+16&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;F#vv = Gv3&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;11&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;-11&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;Gb^ = F^^&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;+11&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;F#v = Gvv&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;12&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;-16&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;Gb^^ = F^3&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;+6&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;F# = Gv&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;13&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;+1&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;G&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;14&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;-4&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;Ab = G^&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;+18&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;G#vv = Av3&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;15&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;-9&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;Ab^ = G^^&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;+13&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;G#v = Avv&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;16&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;-14&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;Ab^^ = G^3&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;+8&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;G# = Av&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;17&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;+3&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;A&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;18&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;-2&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;Bb = A^&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;+20&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;A#vv = Bv3&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;19&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;-7&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;Bb^ = A^^&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;+15&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;A#v = Bvv&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;20&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;-12&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;Bb^^ = A^3&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;+10&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;A# = Bv&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;21&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;+5&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;B&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;22&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;0&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;C&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
&lt;/table&gt;
 
&lt;br /&gt;
P&lt;/body&gt;&lt;/html&gt;</pre></div>