Kite's ups and downs notation: Difference between revisions
Wikispaces>TallKite **Imported revision 590981962 - Original comment: ** |
Wikispaces>TallKite **Imported revision 592510076 - Original comment: ** |
||
Line 1: | Line 1: | ||
<h2>IMPORTED REVISION FROM WIKISPACES</h2> | <h2>IMPORTED REVISION FROM WIKISPACES</h2> | ||
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | ||
: This revision was by author [[User:TallKite|TallKite]] and made on <tt>2016-09- | : This revision was by author [[User:TallKite|TallKite]] and made on <tt>2016-09-18 03:41:20 UTC</tt>.<br> | ||
: The original revision id was <tt> | : The original revision id was <tt>592510076</tt>.<br> | ||
: The revision comment was: <tt></tt><br> | : The revision comment was: <tt></tt><br> | ||
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | ||
Line 1,092: | Line 1,092: | ||
||= ||= || || || etc. ||= ||= || | ||= ||= || || || etc. ||= ||= || | ||
The 22-tone keyboard, with alternate tunings for the black keys (" | The 22-tone keyboard, with alternate tunings for the black keys (^<span style="vertical-align: super;">3</span> means triple-up): | ||
||= keyspan from C ||= genspan from C ||= note ||= genspan from C ||= note || | ||= keyspan from C ||= genspan from C ||= note ||= genspan from C ||= note || | ||
||= 0 ||= 0 ||= C ||= ||= || | ||= 0 ||= 0 ||= C ||= ||= || | ||
||= 1 ||= -5 ||= Db = C^ ||= +17 ||= C#vv = | ||= 1 ||= -5 ||= Db = C^ ||= +17 ||= C#vv = Dv<span style="vertical-align: super;">3</span> || | ||
||= 2 ||= -10 ||= Db^ = C^^ ||= +12 ||= C#v = Dvv || | ||= 2 ||= -10 ||= Db^ = C^^ ||= +12 ||= C#v = Dvv || | ||
||= 3 ||= -15 ||= Db^^ = C^3 ||= +7 ||= C# = Dv || | ||= 3 ||= -15 ||= Db^^ = C^<span style="vertical-align: super;">3</span> ||= +7 ||= C# = Dv || | ||
||= 4 ||= +2 ||= D ||= ||= || | ||= 4 ||= +2 ||= D ||= ||= || | ||
||= 5 ||= -3 ||= Eb = D^ ||= +19 ||= D#vv = | ||= 5 ||= -3 ||= Eb = D^ ||= +19 ||= D#vv = Ev<span style="vertical-align: super;">3</span> || | ||
||= 6 ||= -8 ||= Eb^ = D^^ ||= +14 ||= D#v = Evv || | ||= 6 ||= -8 ||= Eb^ = D^^ ||= +14 ||= D#v = Evv || | ||
||= 7 ||= -13 ||= Eb^^ = D^3 ||= +9 ||= D# = Ev || | ||= 7 ||= -13 ||= Eb^^ = D^<span style="vertical-align: super;">3</span> ||= +9 ||= D# = Ev || | ||
||= 8 ||= +4 ||= E ||= ||= || | ||= 8 ||= +4 ||= E ||= ||= || | ||
||= 9 ||= -1 ||= F ||= ||= || | ||= 9 ||= -1 ||= F ||= ||= || | ||
||= 10 ||= -6 ||= Gb = F^ ||= +16 ||= F#vv = | ||= 10 ||= -6 ||= Gb = F^ ||= +16 ||= F#vv = Gv<span style="vertical-align: super;">3</span> || | ||
||= 11 ||= -11 ||= Gb^ = F^^ ||= +11 ||= F#v = Gvv || | ||= 11 ||= -11 ||= Gb^ = F^^ ||= +11 ||= F#v = Gvv || | ||
||= 12 ||= -16 ||= Gb^^ = F^3 ||= +6 ||= F# = Gv || | ||= 12 ||= -16 ||= Gb^^ = F^<span style="vertical-align: super;">3</span> ||= +6 ||= F# = Gv || | ||
||= 13 ||= +1 ||= G ||= ||= || | ||= 13 ||= +1 ||= G ||= ||= || | ||
||= 14 ||= -4 ||= Ab = G^ ||= +18 ||= G#vv = | ||= 14 ||= -4 ||= Ab = G^ ||= +18 ||= G#vv = Av<span style="vertical-align: super;">3</span> || | ||
||= 15 ||= -9 ||= Ab^ = G^^ ||= +13 ||= G#v = Avv || | ||= 15 ||= -9 ||= Ab^ = G^^ ||= +13 ||= G#v = Avv || | ||
||= 16 ||= -14 ||= Ab^^ = G^3 ||= +8 ||= G# = Av || | ||= 16 ||= -14 ||= Ab^^ = G^<span style="vertical-align: super;">3</span> ||= +8 ||= G# = Av || | ||
||= 17 ||= +3 ||= A ||= ||= || | ||= 17 ||= +3 ||= A ||= ||= || | ||
||= 18 ||= -2 ||= Bb = A^ ||= +20 ||= A#vv = | ||= 18 ||= -2 ||= Bb = A^ ||= +20 ||= A#vv = Bv<span style="vertical-align: super;">3</span> || | ||
||= 19 ||= -7 ||= Bb^ = A^^ ||= +15 ||= A#v = Bvv || | ||= 19 ||= -7 ||= Bb^ = A^^ ||= +15 ||= A#v = Bvv || | ||
||= 20 ||= -12 ||= Bb^^ = A^3 ||= +10 ||= A# = Bv || | ||= 20 ||= -12 ||= Bb^^ = A^<span style="vertical-align: super;">3</span> ||= +10 ||= A# = Bv || | ||
||= 21 ||= +5 ||= B ||= ||= || | ||= 21 ||= +5 ||= B ||= ||= || | ||
||= 22 ||= 0 ||= C ||= ||= || | ||= 22 ||= 0 ||= C ||= ||= || | ||
Line 1,123: | Line 1,123: | ||
K(^) = +1, K(v) = -1 (by definition, the keyspan of an up is 1) | K(^) = +1, K(v) = -1 (by definition, the keyspan of an up is 1) | ||
K(#) = | K(#) = c, K(b) = -c (c = chroma = keyspan of a sharp = how many keys wide aug1 is. For 22-tone, c = 3) | ||
K(# | K(#v<span style="vertical-align: super;">c</span>) = K(#) + c * K(v) = 0 (going up c keys using a sharp, then going down c keys using c downs, must cancel out) | ||
" | #v<span style="vertical-align: super;">c</span> means one sharp plus c downs. Zero keyspans in the genchain only occur on every Nth step for a N-tone framework. E.g., 12-tone keyspans: | ||
|| genchain of fifths || C || G || D || A || E || B || F# || C# || G# || D# || A# || E# || B# || | || genchain of fifths || C || G || D || A || E || B || F# || C# || G# || D# || A# || E# || B# || | ||
|| genspan from C || 0 || 1 || 2 || 3 || 4 || 5 || 6 || 7 || 8 || 9 || 10 || 11 || 12 || | || genspan from C || 0 || 1 || 2 || 3 || 4 || 5 || 6 || 7 || 8 || 9 || 10 || 11 || 12 || | ||
|| 12-tone keyspan from C || 0 || 7 || 2 || 9 || 4 || 11 || 6 || 1 || 8 || 3 || 10 || 5 || 0 || | || 12-tone keyspan from C || 0 || 7 || 2 || 9 || 4 || 11 || 6 || 1 || 8 || 3 || 10 || 5 || 0 || | ||
B#, genspan 12, has a zero keyspan, as does Dbb, genspan -12, and A###, genspan 24. Thus the final equation means that the genspan resulting from going up a sharp and down | B#, genspan 12, has a zero keyspan, as does Dbb, genspan -12, and A###, genspan 24. Thus the final equation means that the genspan resulting from going up a sharp and down c downs must be zero, N, -N, 2N, -2N, etc. Thus this genspan mod N must be zero. | ||
G(#) = 7 (by definition, the sharp's genspan = 7, since we're assuming heptatonic notation) | G(#) = 7 (by definition, the sharp's genspan = 7, since we're assuming heptatonic notation) | ||
G(# | G(#v<span style="vertical-align: super;">c</span>) = G(#) + c * G(v) = G(#) - c * G(^) = 7 - c * G(^) | ||
G(# | G(#v<span style="vertical-align: super;">c</span>) mod N = 0, thus G(#v<span style="vertical-align: super;">c</span>) = i * N for some integer i | ||
7 - | 7 - c * G(^) = i * N | ||
G(^) = - (i * N - 7) / | G(^) = - (i * N - 7) / c | ||
For 22-tone, | For 22-tone, N = 22 and c = 3. We choose i to be the smallest (least absolute value) number that avoids fractions, and produces an interval with a keyspan of 1. Thus i = 1, G(^) = -5, and ^ = min 2nd. In order to provide alternate names for each note, the ^ should always be a 2nd. However as we'll see, this isn't always possible. | ||
All relevant frameworks of size 53 or less: | All relevant frameworks of size 53 or less: | ||
Line 4,233: | Line 4,233: | ||
<br /> | <br /> | ||
The 22-tone keyboard, with alternate tunings for the black keys (& | The 22-tone keyboard, with alternate tunings for the black keys (^<span style="vertical-align: super;">3</span> means triple-up):<br /> | ||
Line 4,270: | Line 4,270: | ||
<td style="text-align: center;">+17<br /> | <td style="text-align: center;">+17<br /> | ||
</td> | </td> | ||
<td style="text-align: center;">C#vv = | <td style="text-align: center;">C#vv = Dv<span style="vertical-align: super;">3</span><br /> | ||
</td> | </td> | ||
</tr> | </tr> | ||
Line 4,290: | Line 4,290: | ||
<td style="text-align: center;">-15<br /> | <td style="text-align: center;">-15<br /> | ||
</td> | </td> | ||
<td style="text-align: center;">Db^^ = C^3<br /> | <td style="text-align: center;">Db^^ = C^<span style="vertical-align: super;">3</span><br /> | ||
</td> | </td> | ||
<td style="text-align: center;">+7<br /> | <td style="text-align: center;">+7<br /> | ||
Line 4,318: | Line 4,318: | ||
<td style="text-align: center;">+19<br /> | <td style="text-align: center;">+19<br /> | ||
</td> | </td> | ||
<td style="text-align: center;">D#vv = | <td style="text-align: center;">D#vv = Ev<span style="vertical-align: super;">3</span><br /> | ||
</td> | </td> | ||
</tr> | </tr> | ||
Line 4,338: | Line 4,338: | ||
<td style="text-align: center;">-13<br /> | <td style="text-align: center;">-13<br /> | ||
</td> | </td> | ||
<td style="text-align: center;">Eb^^ = D^3<br /> | <td style="text-align: center;">Eb^^ = D^<span style="vertical-align: super;">3</span><br /> | ||
</td> | </td> | ||
<td style="text-align: center;">+9<br /> | <td style="text-align: center;">+9<br /> | ||
Line 4,378: | Line 4,378: | ||
<td style="text-align: center;">+16<br /> | <td style="text-align: center;">+16<br /> | ||
</td> | </td> | ||
<td style="text-align: center;">F#vv = | <td style="text-align: center;">F#vv = Gv<span style="vertical-align: super;">3</span><br /> | ||
</td> | </td> | ||
</tr> | </tr> | ||
Line 4,398: | Line 4,398: | ||
<td style="text-align: center;">-16<br /> | <td style="text-align: center;">-16<br /> | ||
</td> | </td> | ||
<td style="text-align: center;">Gb^^ = F^3<br /> | <td style="text-align: center;">Gb^^ = F^<span style="vertical-align: super;">3</span><br /> | ||
</td> | </td> | ||
<td style="text-align: center;">+6<br /> | <td style="text-align: center;">+6<br /> | ||
Line 4,426: | Line 4,426: | ||
<td style="text-align: center;">+18<br /> | <td style="text-align: center;">+18<br /> | ||
</td> | </td> | ||
<td style="text-align: center;">G#vv = | <td style="text-align: center;">G#vv = Av<span style="vertical-align: super;">3</span><br /> | ||
</td> | </td> | ||
</tr> | </tr> | ||
Line 4,446: | Line 4,446: | ||
<td style="text-align: center;">-14<br /> | <td style="text-align: center;">-14<br /> | ||
</td> | </td> | ||
<td style="text-align: center;">Ab^^ = G^3<br /> | <td style="text-align: center;">Ab^^ = G^<span style="vertical-align: super;">3</span><br /> | ||
</td> | </td> | ||
<td style="text-align: center;">+8<br /> | <td style="text-align: center;">+8<br /> | ||
Line 4,474: | Line 4,474: | ||
<td style="text-align: center;">+20<br /> | <td style="text-align: center;">+20<br /> | ||
</td> | </td> | ||
<td style="text-align: center;">A#vv = | <td style="text-align: center;">A#vv = Bv<span style="vertical-align: super;">3</span><br /> | ||
</td> | </td> | ||
</tr> | </tr> | ||
Line 4,494: | Line 4,494: | ||
<td style="text-align: center;">-12<br /> | <td style="text-align: center;">-12<br /> | ||
</td> | </td> | ||
<td style="text-align: center;">Bb^^ = A^3<br /> | <td style="text-align: center;">Bb^^ = A^<span style="vertical-align: super;">3</span><br /> | ||
</td> | </td> | ||
<td style="text-align: center;">+10<br /> | <td style="text-align: center;">+10<br /> | ||
Line 4,533: | Line 4,533: | ||
<br /> | <br /> | ||
K(^) = +1, K(v) = -1 (by definition, the keyspan of an up is 1)<br /> | K(^) = +1, K(v) = -1 (by definition, the keyspan of an up is 1)<br /> | ||
K(#) = | K(#) = c, K(b) = -c (c = chroma = keyspan of a sharp = how many keys wide aug1 is. For 22-tone, c = 3)<br /> | ||
K(# | K(#v<span style="vertical-align: super;">c</span>) = K(#) + c * K(v) = 0 (going up c keys using a sharp, then going down c keys using c downs, must cancel out)<br /> | ||
<br /> | <br /> | ||
& | #v<span style="vertical-align: super;">c</span> means one sharp plus c downs. Zero keyspans in the genchain only occur on every Nth step for a N-tone framework. E.g., 12-tone keyspans:<br /> | ||
Line 4,632: | Line 4,632: | ||
</table> | </table> | ||
B#, genspan 12, has a zero keyspan, as does Dbb, genspan -12, and A###, genspan 24. Thus the final equation means that the genspan resulting from going up a sharp and down | B#, genspan 12, has a zero keyspan, as does Dbb, genspan -12, and A###, genspan 24. Thus the final equation means that the genspan resulting from going up a sharp and down c downs must be zero, N, -N, 2N, -2N, etc. Thus this genspan mod N must be zero.<br /> | ||
<br /> | <br /> | ||
G(#) = 7 (by definition, the sharp's genspan = 7, since we're assuming heptatonic notation)<br /> | G(#) = 7 (by definition, the sharp's genspan = 7, since we're assuming heptatonic notation)<br /> | ||
G(# | G(#v<span style="vertical-align: super;">c</span>) = G(#) + c * G(v) = G(#) - c * G(^) = 7 - c * G(^)<br /> | ||
G(# | G(#v<span style="vertical-align: super;">c</span>) mod N = 0, thus G(#v<span style="vertical-align: super;">c</span>) = i * N for some integer i<br /> | ||
7 - | 7 - c * G(^) = i * N<br /> | ||
G(^) = - (i * N - 7) / | G(^) = - (i * N - 7) / c<br /> | ||
<br /> | <br /> | ||
For 22-tone, | For 22-tone, N = 22 and c = 3. We choose i to be the smallest (least absolute value) number that avoids fractions, and produces an interval with a keyspan of 1. Thus i = 1, G(^) = -5, and ^ = min 2nd. In order to provide alternate names for each note, the ^ should always be a 2nd. However as we'll see, this isn't always possible.<br /> | ||
<br /> | <br /> | ||
All relevant frameworks of size 53 or less:<br /> | All relevant frameworks of size 53 or less:<br /> |