Kite's ups and downs notation: Difference between revisions

Wikispaces>TallKite
**Imported revision 590981962 - Original comment: **
Wikispaces>TallKite
**Imported revision 592510076 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:TallKite|TallKite]] and made on <tt>2016-09-02 16:58:38 UTC</tt>.<br>
: This revision was by author [[User:TallKite|TallKite]] and made on <tt>2016-09-18 03:41:20 UTC</tt>.<br>
: The original revision id was <tt>590981962</tt>.<br>
: The original revision id was <tt>592510076</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
Line 1,092: Line 1,092:
||=  ||=  ||  ||  || etc. ||=  ||=  ||
||=  ||=  ||  ||  || etc. ||=  ||=  ||


The 22-tone keyboard, with alternate tunings for the black keys ("^3" means triple-up):
The 22-tone keyboard, with alternate tunings for the black keys (^&lt;span style="vertical-align: super;"&gt;3&lt;/span&gt; means triple-up):
||= keyspan from C ||= genspan from C ||= note ||= genspan from C ||= note ||
||= keyspan from C ||= genspan from C ||= note ||= genspan from C ||= note ||
||= 0 ||= 0 ||= C ||=  ||=  ||
||= 0 ||= 0 ||= C ||=  ||=  ||
||= 1 ||= -5 ||= Db = C^ ||= +17 ||= C#vv = Dv3 ||
||= 1 ||= -5 ||= Db = C^ ||= +17 ||= C#vv = Dv&lt;span style="vertical-align: super;"&gt;3&lt;/span&gt; ||
||= 2 ||= -10 ||= Db^ = C^^ ||= +12 ||= C#v = Dvv ||
||= 2 ||= -10 ||= Db^ = C^^ ||= +12 ||= C#v = Dvv ||
||= 3 ||= -15 ||= Db^^ = C^3 ||= +7 ||= C# = Dv ||
||= 3 ||= -15 ||= Db^^ = C^&lt;span style="vertical-align: super;"&gt;3&lt;/span&gt; ||= +7 ||= C# = Dv ||
||= 4 ||= +2 ||= D ||=  ||=  ||
||= 4 ||= +2 ||= D ||=  ||=  ||
||= 5 ||= -3 ||= Eb = D^ ||= +19 ||= D#vv = Ev3 ||
||= 5 ||= -3 ||= Eb = D^ ||= +19 ||= D#vv = Ev&lt;span style="vertical-align: super;"&gt;3&lt;/span&gt; ||
||= 6 ||= -8 ||= Eb^ = D^^ ||= +14 ||= D#v = Evv ||
||= 6 ||= -8 ||= Eb^ = D^^ ||= +14 ||= D#v = Evv ||
||= 7 ||= -13 ||= Eb^^ = D^3 ||= +9 ||= D# = Ev ||
||= 7 ||= -13 ||= Eb^^ = D^&lt;span style="vertical-align: super;"&gt;3&lt;/span&gt; ||= +9 ||= D# = Ev ||
||= 8 ||= +4 ||= E ||=  ||=  ||
||= 8 ||= +4 ||= E ||=  ||=  ||
||= 9 ||= -1 ||= F ||=  ||=  ||
||= 9 ||= -1 ||= F ||=  ||=  ||
||= 10 ||= -6 ||= Gb = F^ ||= +16 ||= F#vv = Gv3 ||
||= 10 ||= -6 ||= Gb = F^ ||= +16 ||= F#vv = Gv&lt;span style="vertical-align: super;"&gt;3&lt;/span&gt; ||
||= 11 ||= -11 ||= Gb^ = F^^ ||= +11 ||= F#v = Gvv ||
||= 11 ||= -11 ||= Gb^ = F^^ ||= +11 ||= F#v = Gvv ||
||= 12 ||= -16 ||= Gb^^ = F^3 ||= +6 ||= F# = Gv ||
||= 12 ||= -16 ||= Gb^^ = F^&lt;span style="vertical-align: super;"&gt;3&lt;/span&gt; ||= +6 ||= F# = Gv ||
||= 13 ||= +1 ||= G ||=  ||=  ||
||= 13 ||= +1 ||= G ||=  ||=  ||
||= 14 ||= -4 ||= Ab = G^ ||= +18 ||= G#vv = Av3 ||
||= 14 ||= -4 ||= Ab = G^ ||= +18 ||= G#vv = Av&lt;span style="vertical-align: super;"&gt;3&lt;/span&gt; ||
||= 15 ||= -9 ||= Ab^ = G^^ ||= +13 ||= G#v = Avv ||
||= 15 ||= -9 ||= Ab^ = G^^ ||= +13 ||= G#v = Avv ||
||= 16 ||= -14 ||= Ab^^ = G^3 ||= +8 ||= G# = Av ||
||= 16 ||= -14 ||= Ab^^ = G^&lt;span style="vertical-align: super;"&gt;3&lt;/span&gt; ||= +8 ||= G# = Av ||
||= 17 ||= +3 ||= A ||=  ||=  ||
||= 17 ||= +3 ||= A ||=  ||=  ||
||= 18 ||= -2 ||= Bb = A^ ||= +20 ||= A#vv = Bv3 ||
||= 18 ||= -2 ||= Bb = A^ ||= +20 ||= A#vv = Bv&lt;span style="vertical-align: super;"&gt;3&lt;/span&gt; ||
||= 19 ||= -7 ||= Bb^ = A^^ ||= +15 ||= A#v = Bvv ||
||= 19 ||= -7 ||= Bb^ = A^^ ||= +15 ||= A#v = Bvv ||
||= 20 ||= -12 ||= Bb^^ = A^3 ||= +10 ||= A# = Bv ||
||= 20 ||= -12 ||= Bb^^ = A^&lt;span style="vertical-align: super;"&gt;3&lt;/span&gt; ||= +10 ||= A# = Bv ||
||= 21 ||= +5 ||= B ||=  ||=  ||
||= 21 ||= +5 ||= B ||=  ||=  ||
||= 22 ||= 0 ||= C ||=  ||=  ||
||= 22 ||= 0 ||= C ||=  ||=  ||
Line 1,123: Line 1,123:


K(^) = +1, K(v) = -1 (by definition, the keyspan of an up is 1)
K(^) = +1, K(v) = -1 (by definition, the keyspan of an up is 1)
K(#) = X, K(b) = -X (X = keyspan of a sharp, i.e., how many keys wide aug1 is. For 22-tone, X = 3)
K(#) = c, K(b) = -c (c = chroma = keyspan of a sharp = how many keys wide aug1 is. For 22-tone, c = 3)
K(#vX) = K(#) + X * K(v) = 0 (going up X keys using a sharp, then going down X keys using X downs, must cancel out)
K(#v&lt;span style="vertical-align: super;"&gt;c&lt;/span&gt;) = K(#) + c * K(v) = 0 (going up c keys using a sharp, then going down c keys using c downs, must cancel out)


"#vX" means one sharp plus X downs. Zero keyspans in the genchain only occur on every Nth step for a N-tone framework. E.g., 12-tone keyspans:
#v&lt;span style="vertical-align: super;"&gt;c&lt;/span&gt; means one sharp plus c downs. Zero keyspans in the genchain only occur on every Nth step for a N-tone framework. E.g., 12-tone keyspans:
|| genchain of fifths || C || G || D || A || E || B || F# || C# || G# || D# || A# || E# || B# ||
|| genchain of fifths || C || G || D || A || E || B || F# || C# || G# || D# || A# || E# || B# ||
|| genspan from C || 0 || 1 || 2 || 3 || 4 || 5 || 6 || 7 || 8 || 9 || 10 || 11 || 12 ||
|| genspan from C || 0 || 1 || 2 || 3 || 4 || 5 || 6 || 7 || 8 || 9 || 10 || 11 || 12 ||
|| 12-tone keyspan from C || 0 || 7 || 2 || 9 || 4 || 11 || 6 || 1 || 8 || 3 || 10 || 5 || 0 ||
|| 12-tone keyspan from C || 0 || 7 || 2 || 9 || 4 || 11 || 6 || 1 || 8 || 3 || 10 || 5 || 0 ||
B#, genspan 12, has a zero keyspan, as does Dbb, genspan -12, and A###, genspan 24. Thus the final equation means that the genspan resulting from going up a sharp and down X downs must be zero, N, -N, 2N, -2N, etc. Thus this genspan mod N must be zero.
B#, genspan 12, has a zero keyspan, as does Dbb, genspan -12, and A###, genspan 24. Thus the final equation means that the genspan resulting from going up a sharp and down c downs must be zero, N, -N, 2N, -2N, etc. Thus this genspan mod N must be zero.


G(#) = 7 (by definition, the sharp's genspan = 7, since we're assuming heptatonic notation)
G(#) = 7 (by definition, the sharp's genspan = 7, since we're assuming heptatonic notation)
G(#vX) = G(#) + X * G(v) = G(#) - X * G(^) = 7 - X * G(^)
G(#v&lt;span style="vertical-align: super;"&gt;c&lt;/span&gt;) = G(#) + c * G(v) = G(#) - c * G(^) = 7 - c * G(^)
G(#vX) mod N = 0, thus G(#vX) = i * N for some integer i
G(#v&lt;span style="vertical-align: super;"&gt;c&lt;/span&gt;) mod N = 0, thus G(#v&lt;span style="vertical-align: super;"&gt;c&lt;/span&gt;) = i * N for some integer i
7 - X * G(^) = i * N
7 - c * G(^) = i * N
G(^) = - (i * N - 7) / X
G(^) = - (i * N - 7) / c


For 22-tone, X = 3 and N = 22. We choose i to be the smallest (least absolute value) number that avoids fractions, and produces an interval with a keyspan of 1. Thus i = 1, G(^) = -5, and ^ = min 2nd. In order to provide alternate names for each note, the ^ should always be a 2nd. However as we'll see, this isn't always possible.
For 22-tone, N = 22 and c = 3. We choose i to be the smallest (least absolute value) number that avoids fractions, and produces an interval with a keyspan of 1. Thus i = 1, G(^) = -5, and ^ = min 2nd. In order to provide alternate names for each note, the ^ should always be a 2nd. However as we'll see, this isn't always possible.


All relevant frameworks of size 53 or less:
All relevant frameworks of size 53 or less:
Line 4,233: Line 4,233:


&lt;br /&gt;
&lt;br /&gt;
The 22-tone keyboard, with alternate tunings for the black keys (&amp;quot;^3&amp;quot; means triple-up):&lt;br /&gt;
The 22-tone keyboard, with alternate tunings for the black keys (^&lt;span style="vertical-align: super;"&gt;3&lt;/span&gt; means triple-up):&lt;br /&gt;




Line 4,270: Line 4,270:
         &lt;td style="text-align: center;"&gt;+17&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;+17&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;C#vv = Dv3&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;C#vv = Dv&lt;span style="vertical-align: super;"&gt;3&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 4,290: Line 4,290:
         &lt;td style="text-align: center;"&gt;-15&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;-15&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;Db^^ = C^3&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;Db^^ = C^&lt;span style="vertical-align: super;"&gt;3&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;+7&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;+7&lt;br /&gt;
Line 4,318: Line 4,318:
         &lt;td style="text-align: center;"&gt;+19&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;+19&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;D#vv = Ev3&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;D#vv = Ev&lt;span style="vertical-align: super;"&gt;3&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 4,338: Line 4,338:
         &lt;td style="text-align: center;"&gt;-13&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;-13&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;Eb^^ = D^3&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;Eb^^ = D^&lt;span style="vertical-align: super;"&gt;3&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;+9&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;+9&lt;br /&gt;
Line 4,378: Line 4,378:
         &lt;td style="text-align: center;"&gt;+16&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;+16&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;F#vv = Gv3&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;F#vv = Gv&lt;span style="vertical-align: super;"&gt;3&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 4,398: Line 4,398:
         &lt;td style="text-align: center;"&gt;-16&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;-16&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;Gb^^ = F^3&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;Gb^^ = F^&lt;span style="vertical-align: super;"&gt;3&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;+6&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;+6&lt;br /&gt;
Line 4,426: Line 4,426:
         &lt;td style="text-align: center;"&gt;+18&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;+18&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;G#vv = Av3&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;G#vv = Av&lt;span style="vertical-align: super;"&gt;3&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 4,446: Line 4,446:
         &lt;td style="text-align: center;"&gt;-14&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;-14&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;Ab^^ = G^3&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;Ab^^ = G^&lt;span style="vertical-align: super;"&gt;3&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;+8&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;+8&lt;br /&gt;
Line 4,474: Line 4,474:
         &lt;td style="text-align: center;"&gt;+20&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;+20&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;A#vv = Bv3&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;A#vv = Bv&lt;span style="vertical-align: super;"&gt;3&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 4,494: Line 4,494:
         &lt;td style="text-align: center;"&gt;-12&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;-12&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;Bb^^ = A^3&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;Bb^^ = A^&lt;span style="vertical-align: super;"&gt;3&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;+10&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;+10&lt;br /&gt;
Line 4,533: Line 4,533:
&lt;br /&gt;
&lt;br /&gt;
K(^) = +1, K(v) = -1 (by definition, the keyspan of an up is 1)&lt;br /&gt;
K(^) = +1, K(v) = -1 (by definition, the keyspan of an up is 1)&lt;br /&gt;
K(#) = X, K(b) = -X (X = keyspan of a sharp, i.e., how many keys wide aug1 is. For 22-tone, X = 3)&lt;br /&gt;
K(#) = c, K(b) = -c (c = chroma = keyspan of a sharp = how many keys wide aug1 is. For 22-tone, c = 3)&lt;br /&gt;
K(#vX) = K(#) + X * K(v) = 0 (going up X keys using a sharp, then going down X keys using X downs, must cancel out)&lt;br /&gt;
K(#v&lt;span style="vertical-align: super;"&gt;c&lt;/span&gt;) = K(#) + c * K(v) = 0 (going up c keys using a sharp, then going down c keys using c downs, must cancel out)&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&amp;quot;#vX&amp;quot; means one sharp plus X downs. Zero keyspans in the genchain only occur on every Nth step for a N-tone framework. E.g., 12-tone keyspans:&lt;br /&gt;
#v&lt;span style="vertical-align: super;"&gt;c&lt;/span&gt; means one sharp plus c downs. Zero keyspans in the genchain only occur on every Nth step for a N-tone framework. E.g., 12-tone keyspans:&lt;br /&gt;




Line 4,632: Line 4,632:
&lt;/table&gt;
&lt;/table&gt;


B#, genspan 12, has a zero keyspan, as does Dbb, genspan -12, and A###, genspan 24. Thus the final equation means that the genspan resulting from going up a sharp and down X downs must be zero, N, -N, 2N, -2N, etc. Thus this genspan mod N must be zero.&lt;br /&gt;
B#, genspan 12, has a zero keyspan, as does Dbb, genspan -12, and A###, genspan 24. Thus the final equation means that the genspan resulting from going up a sharp and down c downs must be zero, N, -N, 2N, -2N, etc. Thus this genspan mod N must be zero.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
G(#) = 7 (by definition, the sharp's genspan = 7, since we're assuming heptatonic notation)&lt;br /&gt;
G(#) = 7 (by definition, the sharp's genspan = 7, since we're assuming heptatonic notation)&lt;br /&gt;
G(#vX) = G(#) + X * G(v) = G(#) - X * G(^) = 7 - X * G(^)&lt;br /&gt;
G(#v&lt;span style="vertical-align: super;"&gt;c&lt;/span&gt;) = G(#) + c * G(v) = G(#) - c * G(^) = 7 - c * G(^)&lt;br /&gt;
G(#vX) mod N = 0, thus G(#vX) = i * N for some integer i&lt;br /&gt;
G(#v&lt;span style="vertical-align: super;"&gt;c&lt;/span&gt;) mod N = 0, thus G(#v&lt;span style="vertical-align: super;"&gt;c&lt;/span&gt;) = i * N for some integer i&lt;br /&gt;
7 - X * G(^) = i * N&lt;br /&gt;
7 - c * G(^) = i * N&lt;br /&gt;
G(^) = - (i * N - 7) / X&lt;br /&gt;
G(^) = - (i * N - 7) / c&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
For 22-tone, X = 3 and N = 22. We choose i to be the smallest (least absolute value) number that avoids fractions, and produces an interval with a keyspan of 1. Thus i = 1, G(^) = -5, and ^ = min 2nd. In order to provide alternate names for each note, the ^ should always be a 2nd. However as we'll see, this isn't always possible.&lt;br /&gt;
For 22-tone, N = 22 and c = 3. We choose i to be the smallest (least absolute value) number that avoids fractions, and produces an interval with a keyspan of 1. Thus i = 1, G(^) = -5, and ^ = min 2nd. In order to provide alternate names for each note, the ^ should always be a 2nd. However as we'll see, this isn't always possible.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
All relevant frameworks of size 53 or less:&lt;br /&gt;
All relevant frameworks of size 53 or less:&lt;br /&gt;