Tp tuning: Difference between revisions

Wikispaces>genewardsmith
**Imported revision 347566980 - Original comment: **
 
Wikispaces>genewardsmith
**Imported revision 347567292 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2012-06-23 23:22:36 UTC</tt>.<br>
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2012-06-23 23:24:26 UTC</tt>.<br>
: The original revision id was <tt>347566980</tt>.<br>
: The original revision id was <tt>347567292</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
Line 8: Line 8:
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">**Lp tuning** is a generalzation of [[TOP tuning|TOP]] and [[Tenney-Euclidean tuning|TE]] tuning. If p ≥ 1, define the Lp norm, which we may also call the Lp complexity, of any monzo in weighted coordinates b as  
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">**Lp tuning** is a generalzation of [[TOP tuning|TOP]] and [[Tenney-Euclidean tuning|TE]] tuning. If p ≥ 1, define the Lp norm, which we may also call the Lp complexity, of any monzo in weighted coordinates b as  
[[math]]
[[math]]
|| |b_2 \ b_3 \ ... \ b_k&gt; | ||_p = (|b_2|^p + |b_3|^p + ... + |b_k|^p)^{1/p}
|| |b_2 \ b_3 \ ... \ b_k&gt; ||_p = (|b_2|^p + |b_3|^p + ... + |b_k|^p)^{1/p}
[[math]]
[[math]]
where 2, 3, ... k are the primes up to k in order. In unweighted coordinates, this would be, for unweighted monzo m,  
where 2, 3, ... k are the primes up to k in order. In unweighted coordinates, this would be, for unweighted monzo m,  
[[math]]
[[math]]
|| |m_2 \ m_3 \ ... \ m_k&gt; | ||_p = (|\log_2(2) m_2|^p + |\log_2(3)m_3|^p + ... + |\log_2(k) b_k|^p)^{1/p}
|| |m_2 \ m_3 \ ... \ m_k&gt; ||_p = (|\log_2(2) m_2|^p + |\log_2(3)m_3|^p + ... + |\log_2(k) b_k|^p)^{1/p}
[[math]]
[[math]]
If q is any positive rational number, ||q||_p is the Lp norm defined by the monzo.  
If q is any positive rational number, ||q||_p is the Lp norm defined by the monzo.  
Line 21: Line 21:
&lt;!-- ws:start:WikiTextMathRule:0:
&lt;!-- ws:start:WikiTextMathRule:0:
[[math]]&amp;lt;br/&amp;gt;
[[math]]&amp;lt;br/&amp;gt;
|| |b_2 \ b_3 \ ... \ b_k&amp;gt; | ||_p = (|b_2|^p + |b_3|^p + ... + |b_k|^p)^{1/p}&amp;lt;br/&amp;gt;[[math]]
|| |b_2 \ b_3 \ ... \ b_k&amp;gt; ||_p = (|b_2|^p + |b_3|^p + ... + |b_k|^p)^{1/p}&amp;lt;br/&amp;gt;[[math]]
  --&gt;&lt;script type="math/tex"&gt;|| |b_2 \ b_3 \ ... \ b_k&gt; | ||_p = (|b_2|^p + |b_3|^p + ... + |b_k|^p)^{1/p}&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:0 --&gt;&lt;br /&gt;
  --&gt;&lt;script type="math/tex"&gt;|| |b_2 \ b_3 \ ... \ b_k&gt; ||_p = (|b_2|^p + |b_3|^p + ... + |b_k|^p)^{1/p}&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:0 --&gt;&lt;br /&gt;
where 2, 3, ... k are the primes up to k in order. In unweighted coordinates, this would be, for unweighted monzo m, &lt;br /&gt;
where 2, 3, ... k are the primes up to k in order. In unweighted coordinates, this would be, for unweighted monzo m, &lt;br /&gt;
&lt;!-- ws:start:WikiTextMathRule:1:
&lt;!-- ws:start:WikiTextMathRule:1:
[[math]]&amp;lt;br/&amp;gt;
[[math]]&amp;lt;br/&amp;gt;
|| |m_2 \ m_3 \ ... \ m_k&amp;gt; | ||_p = (|\log_2(2) m_2|^p + |\log_2(3)m_3|^p + ... + |\log_2(k) b_k|^p)^{1/p}&amp;lt;br/&amp;gt;[[math]]
|| |m_2 \ m_3 \ ... \ m_k&amp;gt; ||_p = (|\log_2(2) m_2|^p + |\log_2(3)m_3|^p + ... + |\log_2(k) b_k|^p)^{1/p}&amp;lt;br/&amp;gt;[[math]]
  --&gt;&lt;script type="math/tex"&gt;|| |m_2 \ m_3 \ ... \ m_k&gt; | ||_p = (|\log_2(2) m_2|^p + |\log_2(3)m_3|^p + ... + |\log_2(k) b_k|^p)^{1/p}&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:1 --&gt;&lt;br /&gt;
  --&gt;&lt;script type="math/tex"&gt;|| |m_2 \ m_3 \ ... \ m_k&gt; ||_p = (|\log_2(2) m_2|^p + |\log_2(3)m_3|^p + ... + |\log_2(k) b_k|^p)^{1/p}&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:1 --&gt;&lt;br /&gt;
If q is any positive rational number, ||q||_p is the Lp norm defined by the monzo. &lt;br /&gt;
If q is any positive rational number, ||q||_p is the Lp norm defined by the monzo. &lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
For some just intonation group G, which is to say some finitely generated group of positive rational numbers which can be either a full prime-limit group or some subgroup of such a group, a regular temperament tuning T is defined by a linear map from monzos belonging to G to a value in cents, such that T(c) = 0 for any comma c of the temperament. We derfine the error of the tuning on q, Err(q), as |T(q) - cents(q)}, and if q ≠ 1, the &lt;em&gt;Lp proportional error&lt;/em&gt; as PEp(q) = Err(q)/||q||_p.&lt;/body&gt;&lt;/html&gt;</pre></div>
For some just intonation group G, which is to say some finitely generated group of positive rational numbers which can be either a full prime-limit group or some subgroup of such a group, a regular temperament tuning T is defined by a linear map from monzos belonging to G to a value in cents, such that T(c) = 0 for any comma c of the temperament. We derfine the error of the tuning on q, Err(q), as |T(q) - cents(q)}, and if q ≠ 1, the &lt;em&gt;Lp proportional error&lt;/em&gt; as PEp(q) = Err(q)/||q||_p.&lt;/body&gt;&lt;/html&gt;</pre></div>