Tp tuning: Difference between revisions

Wikispaces>genewardsmith
**Imported revision 357975890 - Original comment: **
Wikispaces>genewardsmith
**Imported revision 357975966 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2012-08-15 13:45:48 UTC</tt>.<br>
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2012-08-15 13:46:13 UTC</tt>.<br>
: The original revision id was <tt>357975890</tt>.<br>
: The original revision id was <tt>357975966</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
Line 30: Line 30:
Note that while the Hahn-Banach theorem is usually proven using Zorn's lemma and does not guarantee any kind of uniqueness, in most cases there is only one Lp tuning and the extension of Ɛ to Ƹ is in that case unique.
Note that while the Hahn-Banach theorem is usually proven using Zorn's lemma and does not guarantee any kind of uniqueness, in most cases there is only one Lp tuning and the extension of Ɛ to Ƹ is in that case unique.


=L2 tuning=  
=T2 tuning=  
In the special case where p = 2, the Tp norm for the full prime limit becomes the L2 norm, which is the [[Tenney-Euclidean metrics|Tenney-Euclidean]] norm, or TE complexity. Associated to this norm is T2 tuning extended to arbitrary JI groups, and the T2 error, which is E2(S) for the temperament S, and which is approximately proportional to [[Tenney-Euclidean temperament measures#TE%20error|TE error]].
In the special case where p = 2, the Tp norm for the full prime limit becomes the L2 norm, which is the [[Tenney-Euclidean metrics|Tenney-Euclidean]] norm, or TE complexity. Associated to this norm is T2 tuning extended to arbitrary JI groups, and the T2 error, which is E2(S) for the temperament S, and which is approximately proportional to [[Tenney-Euclidean temperament measures#TE%20error|TE error]].


For an example, consider [[Chromatic pairs#Indium|indium temperament]], with group 2.5/3.7/3.11/3 and comma basis 3025/3024 and 3125/3087. The corresponding full 11-limit temperament is of rank three, and using the [[Tenney-Euclidean tuning|usual methods]], in particular the pseudoinverse, we find that the T2 tuning map is &lt;1199.552 1901.846 2783.579 3371.401 4153.996|. Applying that to 12/11 gives a generator of 146.995, and multiplying that by 1200.0/1199.552 gives a POT2 tuning, or extended POTE tuning, of 147.010. Converting the tuning map to weighted coordinates and subtracting &lt;1200 1200 1200 1200 1200| gives &lt;-0.4475 -.0685 -1.1778 0.9172 0.7741|. The ordinary Euclidean norm of this, ie the square root of the dot product, gives an error of 1.7414 cents.</pre></div>
For an example, consider [[Chromatic pairs#Indium|indium temperament]], with group 2.5/3.7/3.11/3 and comma basis 3025/3024 and 3125/3087. The corresponding full 11-limit temperament is of rank three, and using the [[Tenney-Euclidean tuning|usual methods]], in particular the pseudoinverse, we find that the T2 tuning map is &lt;1199.552 1901.846 2783.579 3371.401 4153.996|. Applying that to 12/11 gives a generator of 146.995, and multiplying that by 1200.0/1199.552 gives a POT2 tuning, or extended POTE tuning, of 147.010. Converting the tuning map to weighted coordinates and subtracting &lt;1200 1200 1200 1200 1200| gives &lt;-0.4475 -.0685 -1.1778 0.9172 0.7741|. The ordinary Euclidean norm of this, ie the square root of the dot product, gives an error of 1.7414 cents.</pre></div>
<h4>Original HTML content:</h4>
<h4>Original HTML content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;Tp tuning&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;!-- ws:start:WikiTextTocRule:10:&amp;lt;img id=&amp;quot;wikitext@@toc@@flat&amp;quot; class=&amp;quot;WikiMedia WikiMediaTocFlat&amp;quot; title=&amp;quot;Table of Contents&amp;quot; src=&amp;quot;/site/embedthumbnail/toc/flat?w=100&amp;amp;h=16&amp;quot;/&amp;gt; --&gt;&lt;!-- ws:end:WikiTextTocRule:10 --&gt;&lt;!-- ws:start:WikiTextTocRule:11: --&gt;&lt;a href="#Definition"&gt;Definition&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:11 --&gt;&lt;!-- ws:start:WikiTextTocRule:12: --&gt; | &lt;a href="#Dual norm"&gt;Dual norm&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:12 --&gt;&lt;!-- ws:start:WikiTextTocRule:13: --&gt; | &lt;a href="#Applying the Hahn-Banach theorem"&gt;Applying the Hahn-Banach theorem&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:13 --&gt;&lt;!-- ws:start:WikiTextTocRule:14: --&gt; | &lt;a href="#L2 tuning"&gt;L2 tuning&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:14 --&gt;&lt;!-- ws:start:WikiTextTocRule:15: --&gt;
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;Tp tuning&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;!-- ws:start:WikiTextTocRule:10:&amp;lt;img id=&amp;quot;wikitext@@toc@@flat&amp;quot; class=&amp;quot;WikiMedia WikiMediaTocFlat&amp;quot; title=&amp;quot;Table of Contents&amp;quot; src=&amp;quot;/site/embedthumbnail/toc/flat?w=100&amp;amp;h=16&amp;quot;/&amp;gt; --&gt;&lt;!-- ws:end:WikiTextTocRule:10 --&gt;&lt;!-- ws:start:WikiTextTocRule:11: --&gt;&lt;a href="#Definition"&gt;Definition&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:11 --&gt;&lt;!-- ws:start:WikiTextTocRule:12: --&gt; | &lt;a href="#Dual norm"&gt;Dual norm&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:12 --&gt;&lt;!-- ws:start:WikiTextTocRule:13: --&gt; | &lt;a href="#Applying the Hahn-Banach theorem"&gt;Applying the Hahn-Banach theorem&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:13 --&gt;&lt;!-- ws:start:WikiTextTocRule:14: --&gt; | &lt;a href="#T2 tuning"&gt;T2 tuning&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:14 --&gt;&lt;!-- ws:start:WikiTextTocRule:15: --&gt;
&lt;!-- ws:end:WikiTextTocRule:15 --&gt;&lt;!-- ws:start:WikiTextHeadingRule:2:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc0"&gt;&lt;a name="Definition"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:2 --&gt;Definition&lt;/h1&gt;
&lt;!-- ws:end:WikiTextTocRule:15 --&gt;&lt;!-- ws:start:WikiTextHeadingRule:2:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc0"&gt;&lt;a name="Definition"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:2 --&gt;Definition&lt;/h1&gt;
  &lt;strong&gt;Tp tuning&lt;/strong&gt; is a generalzation of &lt;a class="wiki_link" href="/TOP%20tuning"&gt;TOP&lt;/a&gt; and &lt;a class="wiki_link" href="/Tenney-Euclidean%20tuning"&gt;TE&lt;/a&gt; tuning. If p ≥ 1, define the Tp norm, which we may also call the Tp complexity, of any monzo in weighted coordinates b as&lt;br /&gt;
  &lt;strong&gt;Tp tuning&lt;/strong&gt; is a generalzation of &lt;a class="wiki_link" href="/TOP%20tuning"&gt;TOP&lt;/a&gt; and &lt;a class="wiki_link" href="/Tenney-Euclidean%20tuning"&gt;TE&lt;/a&gt; tuning. If p ≥ 1, define the Tp norm, which we may also call the Tp complexity, of any monzo in weighted coordinates b as&lt;br /&gt;
Line 61: Line 61:
Note that while the Hahn-Banach theorem is usually proven using Zorn's lemma and does not guarantee any kind of uniqueness, in most cases there is only one Lp tuning and the extension of Ɛ to Ƹ is in that case unique.&lt;br /&gt;
Note that while the Hahn-Banach theorem is usually proven using Zorn's lemma and does not guarantee any kind of uniqueness, in most cases there is only one Lp tuning and the extension of Ɛ to Ƹ is in that case unique.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:8:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc3"&gt;&lt;a name="L2 tuning"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:8 --&gt;L2 tuning&lt;/h1&gt;
&lt;!-- ws:start:WikiTextHeadingRule:8:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc3"&gt;&lt;a name="T2 tuning"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:8 --&gt;T2 tuning&lt;/h1&gt;
  In the special case where p = 2, the Tp norm for the full prime limit becomes the L2 norm, which is the &lt;a class="wiki_link" href="/Tenney-Euclidean%20metrics"&gt;Tenney-Euclidean&lt;/a&gt; norm, or TE complexity. Associated to this norm is T2 tuning extended to arbitrary JI groups, and the T2 error, which is E2(S) for the temperament S, and which is approximately proportional to &lt;a class="wiki_link" href="/Tenney-Euclidean%20temperament%20measures#TE%20error"&gt;TE error&lt;/a&gt;.&lt;br /&gt;
  In the special case where p = 2, the Tp norm for the full prime limit becomes the L2 norm, which is the &lt;a class="wiki_link" href="/Tenney-Euclidean%20metrics"&gt;Tenney-Euclidean&lt;/a&gt; norm, or TE complexity. Associated to this norm is T2 tuning extended to arbitrary JI groups, and the T2 error, which is E2(S) for the temperament S, and which is approximately proportional to &lt;a class="wiki_link" href="/Tenney-Euclidean%20temperament%20measures#TE%20error"&gt;TE error&lt;/a&gt;.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
For an example, consider &lt;a class="wiki_link" href="/Chromatic%20pairs#Indium"&gt;indium temperament&lt;/a&gt;, with group 2.5/3.7/3.11/3 and comma basis 3025/3024 and 3125/3087. The corresponding full 11-limit temperament is of rank three, and using the &lt;a class="wiki_link" href="/Tenney-Euclidean%20tuning"&gt;usual methods&lt;/a&gt;, in particular the pseudoinverse, we find that the T2 tuning map is &amp;lt;1199.552 1901.846 2783.579 3371.401 4153.996|. Applying that to 12/11 gives a generator of 146.995, and multiplying that by 1200.0/1199.552 gives a POT2 tuning, or extended POTE tuning, of 147.010. Converting the tuning map to weighted coordinates and subtracting &amp;lt;1200 1200 1200 1200 1200| gives &amp;lt;-0.4475 -.0685 -1.1778 0.9172 0.7741|. The ordinary Euclidean norm of this, ie the square root of the dot product, gives an error of 1.7414 cents.&lt;/body&gt;&lt;/html&gt;</pre></div>
For an example, consider &lt;a class="wiki_link" href="/Chromatic%20pairs#Indium"&gt;indium temperament&lt;/a&gt;, with group 2.5/3.7/3.11/3 and comma basis 3025/3024 and 3125/3087. The corresponding full 11-limit temperament is of rank three, and using the &lt;a class="wiki_link" href="/Tenney-Euclidean%20tuning"&gt;usual methods&lt;/a&gt;, in particular the pseudoinverse, we find that the T2 tuning map is &amp;lt;1199.552 1901.846 2783.579 3371.401 4153.996|. Applying that to 12/11 gives a generator of 146.995, and multiplying that by 1200.0/1199.552 gives a POT2 tuning, or extended POTE tuning, of 147.010. Converting the tuning map to weighted coordinates and subtracting &amp;lt;1200 1200 1200 1200 1200| gives &amp;lt;-0.4475 -.0685 -1.1778 0.9172 0.7741|. The ordinary Euclidean norm of this, ie the square root of the dot product, gives an error of 1.7414 cents.&lt;/body&gt;&lt;/html&gt;</pre></div>