The wedgie: Difference between revisions
Wikispaces>genewardsmith **Imported revision 291075113 - Original comment: ** |
Wikispaces>genewardsmith **Imported revision 295292330 - Original comment: ** |
||
Line 1: | Line 1: | ||
<h2>IMPORTED REVISION FROM WIKISPACES</h2> | <h2>IMPORTED REVISION FROM WIKISPACES</h2> | ||
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | ||
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2012-01- | : This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2012-01-25 14:09:02 UTC</tt>.<br> | ||
: The original revision id was <tt> | : The original revision id was <tt>295292330</tt>.<br> | ||
: The revision comment was: <tt></tt><br> | : The revision comment was: <tt></tt><br> | ||
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | ||
Line 35: | Line 35: | ||
Essentially the same situation obtains for rank two temperaments in higher limits. The rule then is that if E ≤ 1/(C(n, 3)√lb(q)√lb(p)) then wedging K = <1 lb(3) lb(5) ... lb(p)| with the val consisting of 0 followed by the first n-1 coefficients of the wedgie and rounding will give the wedgie. Here p and q are the largest and second largest primes in the prime limit, lb(x) is log base two, and C(n, 3) is n choose three, n(n-1)(n-2)/6. | Essentially the same situation obtains for rank two temperaments in higher limits. The rule then is that if E ≤ 1/(C(n, 3)√lb(q)√lb(p)) then wedging K = <1 lb(3) lb(5) ... lb(p)| with the val consisting of 0 followed by the first n-1 coefficients of the wedgie and rounding will give the wedgie. Here p and q are the largest and second largest primes in the prime limit, lb(x) is log base two, and C(n, 3) is n choose three, n(n-1)(n-2)/6. | ||
More generally, we can reconstitute W by rounding Y = (W∨2)∧K to the nearest integer coefficients, where K is the JI point <1 lb(3) lb(5) ... lb(p)| in unweighted coordinates. Then we have ||(W-Y)+Y|| ≤ ||W-Y|| + ||Y|| by the triangle inequality, and since ||W-Y|| is bounded by the fact that W has been obtained by rounding, complexity, which is ||(W-Y)+Y||=||W||, can be bounded by ||Y||; which means it can be bounded by the coefficients of Y, which are those coefficients of W which can be found in W∨2 and over which we could be conducting a search. Moreover, we have from Y∧K = ((W∨2)∧K)∧K = 0 that relative error, which is ||W∧K||, is ||((W-Y) + Y)∧K||=||(W-Y)∧K||, hence relative error is also bounded by the fact that ||W-Y|| is bounded. This means that unless relative error is large, W can be recovered by rounding Y, and hence all wedgies within such a bound can be found by a search on only some prospective coefficients. | More generally, we can reconstitute W by rounding Y = (W∨2)∧K to the nearest integer coefficients, where K is the JI point <1 lb(3) lb(5) ... lb(p)| in unweighted coordinates. Then we have ||(W-Y)+Y|| ≤ ||W-Y|| + ||Y|| by the triangle inequality, and since ||W-Y|| is bounded by the fact that W has been obtained by rounding, complexity, which is ||(W-Y)+Y||=||W||, can be bounded by ||Y||; which means it can be bounded by the coefficients of Y, which are those coefficients of W which can be found in W∨2 and over which we could be conducting a search. Moreover, we have from Y∧K = ((W∨2)∧K)∧K = 0 that relative error, which is ||W∧K||, is ||((W-Y) + Y)∧K||=||(W-Y)∧K||, hence relative error is also bounded by the fact that ||W-Y|| is bounded. This means that unless relative error is large, W can be recovered by rounding Y, and hence all wedgies within such a bound can be found by a search on only some prospective coefficients. Search spaces for complexity measures such as [[Tenney-Euclidean temperament measures#TE Complexity|Te complexity]] which are defined in terms of the wedgie can be obtained by assuming all wedgie coefficients which are not being used to reconstitute a wedgie are zero, which gives a minimum value for the complexity. In the case of rank two temperaments, an especially efficient complexity measure for such searches, and one with some other desirable properties, is [[generator complexity]]. | ||
</pre></div> | </pre></div> | ||
Line 71: | Line 70: | ||
Essentially the same situation obtains for rank two temperaments in higher limits. The rule then is that if E ≤ 1/(C(n, 3)√lb(q)√lb(p)) then wedging K = &lt;1 lb(3) lb(5) ... lb(p)| with the val consisting of 0 followed by the first n-1 coefficients of the wedgie and rounding will give the wedgie. Here p and q are the largest and second largest primes in the prime limit, lb(x) is log base two, and C(n, 3) is n choose three, n(n-1)(n-2)/6.<br /> | Essentially the same situation obtains for rank two temperaments in higher limits. The rule then is that if E ≤ 1/(C(n, 3)√lb(q)√lb(p)) then wedging K = &lt;1 lb(3) lb(5) ... lb(p)| with the val consisting of 0 followed by the first n-1 coefficients of the wedgie and rounding will give the wedgie. Here p and q are the largest and second largest primes in the prime limit, lb(x) is log base two, and C(n, 3) is n choose three, n(n-1)(n-2)/6.<br /> | ||
<br /> | <br /> | ||
More generally, we can reconstitute W by rounding Y = (W∨2)∧K to the nearest integer coefficients, where K is the JI point &lt;1 lb(3) lb(5) ... lb(p)| in unweighted coordinates. Then we have ||(W-Y)+Y|| ≤ ||W-Y|| + ||Y|| by the triangle inequality, and since ||W-Y|| is bounded by the fact that W has been obtained by rounding, complexity, which is ||(W-Y)+Y||=||W||, can be bounded by ||Y||; which means it can be bounded by the coefficients of Y, which are those coefficients of W which can be found in W∨2 and over which we could be conducting a search. Moreover, we have from Y∧K = ((W∨2)∧K)∧K = 0 that relative error, which is ||W∧K||, is ||((W-Y) + Y)∧K||=||(W-Y)∧K||, hence relative error is also bounded by the fact that ||W-Y|| is bounded. This means that unless relative error is large, W can be recovered by rounding Y, and hence all wedgies within such a bound can be found by a search on only some prospective coefficients. | More generally, we can reconstitute W by rounding Y = (W∨2)∧K to the nearest integer coefficients, where K is the JI point &lt;1 lb(3) lb(5) ... lb(p)| in unweighted coordinates. Then we have ||(W-Y)+Y|| ≤ ||W-Y|| + ||Y|| by the triangle inequality, and since ||W-Y|| is bounded by the fact that W has been obtained by rounding, complexity, which is ||(W-Y)+Y||=||W||, can be bounded by ||Y||; which means it can be bounded by the coefficients of Y, which are those coefficients of W which can be found in W∨2 and over which we could be conducting a search. Moreover, we have from Y∧K = ((W∨2)∧K)∧K = 0 that relative error, which is ||W∧K||, is ||((W-Y) + Y)∧K||=||(W-Y)∧K||, hence relative error is also bounded by the fact that ||W-Y|| is bounded. This means that unless relative error is large, W can be recovered by rounding Y, and hence all wedgies within such a bound can be found by a search on only some prospective coefficients. Search spaces for complexity measures such as <a class="wiki_link" href="/Tenney-Euclidean%20temperament%20measures#TE Complexity">Te complexity</a> which are defined in terms of the wedgie can be obtained by assuming all wedgie coefficients which are not being used to reconstitute a wedgie are zero, which gives a minimum value for the complexity. In the case of rank two temperaments, an especially efficient complexity measure for such searches, and one with some other desirable properties, is <a class="wiki_link" href="/generator%20complexity">generator complexity</a>.</body></html></pre></div> |