The wedgie: Difference between revisions

Wikispaces>genewardsmith
**Imported revision 301725948 - Original comment: **
Wikispaces>genewardsmith
**Imported revision 312082798 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2012-02-14 14:24:20 UTC</tt>.<br>
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2012-03-18 10:55:50 UTC</tt>.<br>
: The original revision id was <tt>301725948</tt>.<br>
: The original revision id was <tt>312082798</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
Line 10: Line 10:
=Basics=
=Basics=
The //[[Wedgies and Multivals|wedgie]]// is a way of defining and working with an [[abstract regular temperament]]. If one takes r independent [[vals]] in a p-limit group of n primes, then the wedgie is defined by taking the [[Wedgies and Multivals|wedge product]] of the vals, and dividing out the greatest common divisior of the coefficients, to produce an r-multival. If the first non-zero coefficient of this multival is negative, it is then scalar multiplied by -1, changing the sign of the first non-zero coefficient to be positive. The result is the wedgie. Wedgies are in a one-to-one relationship with abstract regular temperaments; that is, regular temperaments where no tuning has been decided on.
The //[[Wedgies and Multivals|wedgie]]// is a way of defining and working with an [[abstract regular temperament]]. If one takes r independent [[vals]] in a p-limit group of n primes, then the wedgie is defined by taking the [[Wedgies and Multivals|wedge product]] of the vals, and dividing out the greatest common divisior of the coefficients, to produce an r-multival. If the first non-zero coefficient of this multival is negative, it is then scalar multiplied by -1, changing the sign of the first non-zero coefficient to be positive. The result is the wedgie. Wedgies are in a one-to-one relationship with abstract regular temperaments; that is, regular temperaments where no tuning has been decided on.
=Truncation of wedgies=
A useful operation to perform on any multivector, including wedgies, is truncation of the wedgie to a lower prime limit. This in effect sets all the basis vectors of a p-limit wedgie which are greater than q, the prime limit being truncated to, to zero. An alorithm to produce the truncation is to list the r-subsets of the primes to p in alphabetical order, and add the corresponding coefficient to the list of the q-limit truncation if and only if the maximum prime in the r-subet is less than or equal to q. Truncating a wedgie can lead to a non-wedgie if the GCD of the coefficients is greater than one; this means that in the lower limit, [[Wedgies and Multivals|contortion]] has appeared.


=Conditions on being a wedgie=
=Conditions on being a wedgie=
Line 38: Line 41:


In the particular case of the 11-limit in rank three, we have that (W∨2)∧K gives the full wedgie, which has ten coefficents, in terms of the first six upon rounding off. Using this for a search is less difficult than it sounds, since the complexity numbers for rank three are so much lower. If the relative error E satisifes E ≤ 1/(2√5 q5q7q11), then the rounding off is guaranteed to lead to the correct result. This amount, 0.0099, is again easily met.
In the particular case of the 11-limit in rank three, we have that (W∨2)∧K gives the full wedgie, which has ten coefficents, in terms of the first six upon rounding off. Using this for a search is less difficult than it sounds, since the complexity numbers for rank three are so much lower. If the relative error E satisifes E ≤ 1/(2√5 q5q7q11), then the rounding off is guaranteed to lead to the correct result. This amount, 0.0099, is again easily met.
</pre></div>
</pre></div>
<h4>Original HTML content:</h4>
<h4>Original HTML content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;The wedgie&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;!-- ws:start:WikiTextTocRule:9:&amp;lt;img id=&amp;quot;wikitext@@toc@@flat&amp;quot; class=&amp;quot;WikiMedia WikiMediaTocFlat&amp;quot; title=&amp;quot;Table of Contents&amp;quot; src=&amp;quot;/site/embedthumbnail/toc/flat?w=100&amp;amp;h=16&amp;quot;/&amp;gt; --&gt;&lt;!-- ws:end:WikiTextTocRule:9 --&gt;&lt;!-- ws:start:WikiTextTocRule:10: --&gt;&lt;a href="#Basics"&gt;Basics&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:10 --&gt;&lt;!-- ws:start:WikiTextTocRule:11: --&gt; | &lt;a href="#Conditions on being a wedgie"&gt;Conditions on being a wedgie&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:11 --&gt;&lt;!-- ws:start:WikiTextTocRule:12: --&gt; | &lt;a href="#Constrained wedgies"&gt;Constrained wedgies&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:12 --&gt;&lt;!-- ws:start:WikiTextTocRule:13: --&gt; | &lt;a href="#Reconstituting wedgies in general"&gt;Reconstituting wedgies in general&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:13 --&gt;&lt;!-- ws:start:WikiTextTocRule:14: --&gt;
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;The wedgie&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;!-- ws:start:WikiTextTocRule:11:&amp;lt;img id=&amp;quot;wikitext@@toc@@flat&amp;quot; class=&amp;quot;WikiMedia WikiMediaTocFlat&amp;quot; title=&amp;quot;Table of Contents&amp;quot; src=&amp;quot;/site/embedthumbnail/toc/flat?w=100&amp;amp;h=16&amp;quot;/&amp;gt; --&gt;&lt;!-- ws:end:WikiTextTocRule:11 --&gt;&lt;!-- ws:start:WikiTextTocRule:12: --&gt;&lt;a href="#Basics"&gt;Basics&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:12 --&gt;&lt;!-- ws:start:WikiTextTocRule:13: --&gt; | &lt;a href="#Truncation of wedgies"&gt;Truncation of wedgies&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:13 --&gt;&lt;!-- ws:start:WikiTextTocRule:14: --&gt; | &lt;a href="#Conditions on being a wedgie"&gt;Conditions on being a wedgie&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:14 --&gt;&lt;!-- ws:start:WikiTextTocRule:15: --&gt; | &lt;a href="#Constrained wedgies"&gt;Constrained wedgies&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:15 --&gt;&lt;!-- ws:start:WikiTextTocRule:16: --&gt; | &lt;a href="#Reconstituting wedgies in general"&gt;Reconstituting wedgies in general&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:16 --&gt;&lt;!-- ws:start:WikiTextTocRule:17: --&gt;
&lt;!-- ws:end:WikiTextTocRule:14 --&gt;&lt;br /&gt;
&lt;!-- ws:end:WikiTextTocRule:17 --&gt;&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:1:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc0"&gt;&lt;a name="Basics"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:1 --&gt;Basics&lt;/h1&gt;
&lt;!-- ws:start:WikiTextHeadingRule:1:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc0"&gt;&lt;a name="Basics"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:1 --&gt;Basics&lt;/h1&gt;
The &lt;em&gt;&lt;a class="wiki_link" href="/Wedgies%20and%20Multivals"&gt;wedgie&lt;/a&gt;&lt;/em&gt; is a way of defining and working with an &lt;a class="wiki_link" href="/abstract%20regular%20temperament"&gt;abstract regular temperament&lt;/a&gt;. If one takes r independent &lt;a class="wiki_link" href="/vals"&gt;vals&lt;/a&gt; in a p-limit group of n primes, then the wedgie is defined by taking the &lt;a class="wiki_link" href="/Wedgies%20and%20Multivals"&gt;wedge product&lt;/a&gt; of the vals, and dividing out the greatest common divisior of the coefficients, to produce an r-multival. If the first non-zero coefficient of this multival is negative, it is then scalar multiplied by -1, changing the sign of the first non-zero coefficient to be positive. The result is the wedgie. Wedgies are in a one-to-one relationship with abstract regular temperaments; that is, regular temperaments where no tuning has been decided on.&lt;br /&gt;
The &lt;em&gt;&lt;a class="wiki_link" href="/Wedgies%20and%20Multivals"&gt;wedgie&lt;/a&gt;&lt;/em&gt; is a way of defining and working with an &lt;a class="wiki_link" href="/abstract%20regular%20temperament"&gt;abstract regular temperament&lt;/a&gt;. If one takes r independent &lt;a class="wiki_link" href="/vals"&gt;vals&lt;/a&gt; in a p-limit group of n primes, then the wedgie is defined by taking the &lt;a class="wiki_link" href="/Wedgies%20and%20Multivals"&gt;wedge product&lt;/a&gt; of the vals, and dividing out the greatest common divisior of the coefficients, to produce an r-multival. If the first non-zero coefficient of this multival is negative, it is then scalar multiplied by -1, changing the sign of the first non-zero coefficient to be positive. The result is the wedgie. Wedgies are in a one-to-one relationship with abstract regular temperaments; that is, regular temperaments where no tuning has been decided on.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:3:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc1"&gt;&lt;a name="Conditions on being a wedgie"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:3 --&gt;Conditions on being a wedgie&lt;/h1&gt;
&lt;!-- ws:start:WikiTextHeadingRule:3:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc1"&gt;&lt;a name="Truncation of wedgies"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:3 --&gt;Truncation of wedgies&lt;/h1&gt;
A useful operation to perform on any multivector, including wedgies, is truncation of the wedgie to a lower prime limit. This in effect sets all the basis vectors of a p-limit wedgie which are greater than q, the prime limit being truncated to, to zero. An alorithm to produce the truncation is to list the r-subsets of the primes to p in alphabetical order, and add the corresponding coefficient to the list of the q-limit truncation if and only if the maximum prime in the r-subet is less than or equal to q. Truncating a wedgie can lead to a non-wedgie if the GCD of the coefficients is greater than one; this means that in the lower limit, &lt;a class="wiki_link" href="/Wedgies%20and%20Multivals"&gt;contortion&lt;/a&gt; has appeared.&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:5:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc2"&gt;&lt;a name="Conditions on being a wedgie"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:5 --&gt;Conditions on being a wedgie&lt;/h1&gt;
If we take any three integers &amp;lt;&amp;lt;a b c|| such that GCD(a, b, c) = 1 and a ≥ 1 the result is always a wedgie, the wedgie tempering out the &lt;a class="wiki_link" href="/The%20dual"&gt;dual&lt;/a&gt; &lt;a class="wiki_link" href="/monzos"&gt;monzo&lt;/a&gt; |c -b a&amp;gt;. Since three such integers chosen at random are unlikely to produce a suitably small comma, the temperament will probably not be worth much, but at least it can be defined. &lt;br /&gt;
If we take any three integers &amp;lt;&amp;lt;a b c|| such that GCD(a, b, c) = 1 and a ≥ 1 the result is always a wedgie, the wedgie tempering out the &lt;a class="wiki_link" href="/The%20dual"&gt;dual&lt;/a&gt; &lt;a class="wiki_link" href="/monzos"&gt;monzo&lt;/a&gt; |c -b a&amp;gt;. Since three such integers chosen at random are unlikely to produce a suitably small comma, the temperament will probably not be worth much, but at least it can be defined. &lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
Line 53: Line 58:
In the 7-limit case, if we wedge a prospective rank two multival W = &amp;lt;&amp;lt;a b c d e f|| with itself, we obtain W∧W = 2(af-be+cd). The quantity af-be+cd is the &lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Pfaffian" rel="nofollow"&gt;Pfaffian&lt;/a&gt; of the wedgie, and that the Pfaffian is zero tells us that in the five-dimensional projective space &lt;strong&gt;P⁵&lt;/strong&gt; in which wedgies live, the wedgie lies on a (four-dimensional) &lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Hypersurface" rel="nofollow"&gt;hypersurfce&lt;/a&gt;, known as the &lt;a class="wiki_link" href="/Abstract%20regular%20temperament#The Geometry of Regular Temperaments"&gt;Grassmannian&lt;/a&gt; &lt;strong&gt;Gr&lt;/strong&gt;(2, 4). For an 11-limit rank-two wedgie W = &amp;lt;&amp;lt;w1 w2 w3 w4 w5 w6 w7 w8 w9 w10|| we have that W∧W = 2&amp;lt;&amp;lt;&amp;lt;&amp;lt;w1w8-w2w6+w3w5, w1w9-w2w7+w4w5, w1w10-w3w7+w4w6, w2w10-w3w9+w4w8, w5w10-w6w9+w7w8|||| is zero. These conditions allow us to solve for three of the coefficients in terms of the other seven, and so that &lt;strong&gt;Gr&lt;/strong&gt;(2, 5), the Grassmannian of rank-two 11-limit temperaments, is a six-dimensional projective &lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Algebraic_variety" rel="nofollow"&gt;algebraic variety&lt;/a&gt; in nine-dimensional projective space &lt;strong&gt;P⁹&lt;/strong&gt;. Wedgies correspond to rational points on this variety. For 11-limit rank three temperaments, we have w6w1-w5w2+w4w3 = w9w1-w8w2+w7w3 = w10w1-w8w4+w7w5 = w10w2-w9w4+w7w6 = w10w3-w9w5+w8w6 = 0; again, this leads to a six-dimensional variety, this time &lt;strong&gt;Gr&lt;/strong&gt;(3, 5). &lt;br /&gt;
In the 7-limit case, if we wedge a prospective rank two multival W = &amp;lt;&amp;lt;a b c d e f|| with itself, we obtain W∧W = 2(af-be+cd). The quantity af-be+cd is the &lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Pfaffian" rel="nofollow"&gt;Pfaffian&lt;/a&gt; of the wedgie, and that the Pfaffian is zero tells us that in the five-dimensional projective space &lt;strong&gt;P⁵&lt;/strong&gt; in which wedgies live, the wedgie lies on a (four-dimensional) &lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Hypersurface" rel="nofollow"&gt;hypersurfce&lt;/a&gt;, known as the &lt;a class="wiki_link" href="/Abstract%20regular%20temperament#The Geometry of Regular Temperaments"&gt;Grassmannian&lt;/a&gt; &lt;strong&gt;Gr&lt;/strong&gt;(2, 4). For an 11-limit rank-two wedgie W = &amp;lt;&amp;lt;w1 w2 w3 w4 w5 w6 w7 w8 w9 w10|| we have that W∧W = 2&amp;lt;&amp;lt;&amp;lt;&amp;lt;w1w8-w2w6+w3w5, w1w9-w2w7+w4w5, w1w10-w3w7+w4w6, w2w10-w3w9+w4w8, w5w10-w6w9+w7w8|||| is zero. These conditions allow us to solve for three of the coefficients in terms of the other seven, and so that &lt;strong&gt;Gr&lt;/strong&gt;(2, 5), the Grassmannian of rank-two 11-limit temperaments, is a six-dimensional projective &lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Algebraic_variety" rel="nofollow"&gt;algebraic variety&lt;/a&gt; in nine-dimensional projective space &lt;strong&gt;P⁹&lt;/strong&gt;. Wedgies correspond to rational points on this variety. For 11-limit rank three temperaments, we have w6w1-w5w2+w4w3 = w9w1-w8w2+w7w3 = w10w1-w8w4+w7w5 = w10w2-w9w4+w7w6 = w10w3-w9w5+w8w6 = 0; again, this leads to a six-dimensional variety, this time &lt;strong&gt;Gr&lt;/strong&gt;(3, 5). &lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:5:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc2"&gt;&lt;a name="Constrained wedgies"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:5 --&gt;Constrained wedgies&lt;/h1&gt;
&lt;!-- ws:start:WikiTextHeadingRule:7:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc3"&gt;&lt;a name="Constrained wedgies"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:7 --&gt;Constrained wedgies&lt;/h1&gt;
Most of the wedgies which are legitimate according to the previous section do not represent temperaments which are in any way reasonable. To get temperaments which are, we need to constrain the relevant metrics--complexity should not be too high, error should not be too high, and badness should not be so high that competing temperaments are much better. Let us consider how bounding &lt;a class="wiki_link" href="/Tenney-Euclidean%20temperament%20measures#TE simple badness"&gt;relative error&lt;/a&gt; E, aka simple badness, constrains a 7-limit rank two wedgie W = &amp;lt;&amp;lt;a b c d e f||.&lt;br /&gt;
Most of the wedgies which are legitimate according to the previous section do not represent temperaments which are in any way reasonable. To get temperaments which are, we need to constrain the relevant metrics--complexity should not be too high, error should not be too high, and badness should not be so high that competing temperaments are much better. Let us consider how bounding &lt;a class="wiki_link" href="/Tenney-Euclidean%20temperament%20measures#TE simple badness"&gt;relative error&lt;/a&gt; E, aka simple badness, constrains a 7-limit rank two wedgie W = &amp;lt;&amp;lt;a b c d e f||.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
Line 69: Line 74:
If C = ||W|| is the TE complexity, then the formula for the &lt;a class="wiki_link" href="/Tenney-Euclidean%20metrics#Logflat TE badness"&gt;logflat badness&lt;/a&gt; B in the 7-limit rank-two case is particularly simple: B = CE. If complexity is bounded by, for example, 20 (which allows for some quite complex temperaments) then since E ≤ 1/(4q5q7), B ≤ 20/(4q5q7) = 0.767. This badness figure is easily met. While simply bounding complexity will lead to a finite list, the list would be enormous. An alternative is also to bound badness; for instance, we might produce a list of 7-limit rank-two temperaments with complexity less than 20 and a more reasonable badness limit, such as 0.05 or 0.06.&lt;br /&gt;
If C = ||W|| is the TE complexity, then the formula for the &lt;a class="wiki_link" href="/Tenney-Euclidean%20metrics#Logflat TE badness"&gt;logflat badness&lt;/a&gt; B in the 7-limit rank-two case is particularly simple: B = CE. If complexity is bounded by, for example, 20 (which allows for some quite complex temperaments) then since E ≤ 1/(4q5q7), B ≤ 20/(4q5q7) = 0.767. This badness figure is easily met. While simply bounding complexity will lead to a finite list, the list would be enormous. An alternative is also to bound badness; for instance, we might produce a list of 7-limit rank-two temperaments with complexity less than 20 and a more reasonable badness limit, such as 0.05 or 0.06.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:7:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc3"&gt;&lt;a name="Reconstituting wedgies in general"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:7 --&gt;Reconstituting wedgies in general&lt;/h1&gt;
&lt;!-- ws:start:WikiTextHeadingRule:9:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc4"&gt;&lt;a name="Reconstituting wedgies in general"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:9 --&gt;Reconstituting wedgies in general&lt;/h1&gt;
Essentially the same situation obtains for rank two temperaments in higher limits. The rule then is that if E ≤ 1/(C(n, 3)lb(q)lb(p)) then wedging K = &amp;lt;1 lb(3) lb(5) ... lb(p)| with the val consisting of 0 followed by the first n-1 coefficients of the wedgie and rounding will give the wedgie. Here p and q are the largest and second largest primes in the prime limit, lb(x) is log base two, and C(n, 3) is n choose three, n(n-1)(n-2)/6.&lt;br /&gt;
Essentially the same situation obtains for rank two temperaments in higher limits. The rule then is that if E ≤ 1/(C(n, 3)lb(q)lb(p)) then wedging K = &amp;lt;1 lb(3) lb(5) ... lb(p)| with the val consisting of 0 followed by the first n-1 coefficients of the wedgie and rounding will give the wedgie. Here p and q are the largest and second largest primes in the prime limit, lb(x) is log base two, and C(n, 3) is n choose three, n(n-1)(n-2)/6.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;