The Riemann zeta function and tuning: Difference between revisions

Wikispaces>genewardsmith
**Imported revision 216384744 - Original comment: **
Wikispaces>genewardsmith
**Imported revision 216384906 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2011-04-01 23:18:20 UTC</tt>.<br>
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2011-04-01 23:19:43 UTC</tt>.<br>
: The original revision id was <tt>216384744</tt>.<br>
: The original revision id was <tt>216384906</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
Line 15: Line 15:
where E(q) is the error  
where E(q) is the error  
[[math]]  
[[math]]  
{b} \over {N} - \log_ q  
\frac{b}{N} - \log_2 q  
[[math]]  
[[math]]  
of the [[patent val]] tuning, meaning the nearest to q, of the prime q, and the sum is over all primes up to p.</pre></div>
of the [[patent val]] tuning, meaning the nearest to q, of the prime q, and the sum is over all primes up to p.</pre></div>
Line 29: Line 29:
where E(q) is the error &lt;br /&gt;
where E(q) is the error &lt;br /&gt;
&lt;a class="wiki_link" href="/math"&gt;math&lt;/a&gt; &lt;br /&gt;
&lt;a class="wiki_link" href="/math"&gt;math&lt;/a&gt; &lt;br /&gt;
{b} \over {N} - \log_ q &lt;br /&gt;
\frac{b}{N} - \log_2 q &lt;br /&gt;
&lt;a class="wiki_link" href="/math"&gt;math&lt;/a&gt; &lt;br /&gt;
&lt;a class="wiki_link" href="/math"&gt;math&lt;/a&gt; &lt;br /&gt;
of the &lt;a class="wiki_link" href="/patent%20val"&gt;patent val&lt;/a&gt; tuning, meaning the nearest to q, of the prime q, and the sum is over all primes up to p.&lt;/body&gt;&lt;/html&gt;</pre></div>
of the &lt;a class="wiki_link" href="/patent%20val"&gt;patent val&lt;/a&gt; tuning, meaning the nearest to q, of the prime q, and the sum is over all primes up to p.&lt;/body&gt;&lt;/html&gt;</pre></div>