The Riemann zeta function and tuning: Difference between revisions

Wikispaces>genewardsmith
**Imported revision 218162198 - Original comment: **
Wikispaces>genewardsmith
**Imported revision 218178428 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2011-04-07 12:49:53 UTC</tt>.<br>
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2011-04-07 13:28:50 UTC</tt>.<br>
: The original revision id was <tt>218162198</tt>.<br>
: The original revision id was <tt>218178428</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
Line 52: Line 52:
[[math]]
[[math]]


so that we see that the absolute value of the zeta function serves to measure error of an equal division.
so that we see that the absolute value of the zeta function serves to measure the error of an equal division.


=Into the critical strip=
=Into the critical strip=
So long as s is greater than or equal to one, the absolute value of the zeta function can be seen as an error measurement. However, the rationale for that view of things departs when s is less than one, particularly in the [[http://mathworld.wolfram.com/CriticalStrip.html|critical strip]], when s lies between zero and one. As s approaches the value s=1/2 of the [[http://mathworld.wolfram.com/CriticalLine.html|critical line]], the information content, so to speak, of the zeta function concerning higher primes increases and it behaves increasingly like a badness measure (or more correctly, since we have inverted it, like a goodness measure.) Beyond the critical line, the quasi-symmetric [[http://planetmath.org/encyclopedia/FunctionalEquationOfTheRiemannZetaFunction.html|functional equation]] of the zeta function tells us that past the critical line the information content starts to decrease again, with 1-s and s having the same information content. Hence it is the zeta function between s=1/2 and s=1, and especially the zeta function along the critical line s=1/2, which of the most interest.
So long as s is greater than or equal to one, the absolute value of the zeta function can be seen as an error measurement. However, the rationale for that view of things departs when s is less than one, particularly in the [[http://mathworld.wolfram.com/CriticalStrip.html|critical strip]], when s lies between zero and one. As s approaches the value s=1/2 of the [[http://mathworld.wolfram.com/CriticalLine.html|critical line]], the information content, so to speak, of the zeta function concerning higher primes increases and it behaves increasingly like a badness measure (or more correctly, since we have inverted it, like a goodness measure.) The quasi-symmetric [[http://planetmath.org/encyclopedia/FunctionalEquationOfTheRiemannZetaFunction.html|functional equation]] of the zeta function tells us that past the critical line the information content starts to decrease again, with 1-s and s having the same information content. Hence it is the zeta function between s=1/2 and s=1, and especially the zeta function along the critical line s=1/2, which is of the most interest.


Hence the question arises as to how we can continue the zeta function into the critical strip in a way which supports the connection with tuning and the claims above. There are various approaches to this, but perhaps the simplest is the use of the [[http://en.wikipedia.org/wiki/Dirichlet_eta_function|Dirichlet eta function]] which was introduced to mathematics by [[http://en.wikipedia.org/wiki/Johann_Peter_Gustav_Lejeune_Dirichlet|Johann Peter Gustav Lejeune Dirichlet]], who despite his name was a German and the brother-in-law of [[http://en.wikipedia.org/wiki/Felix_Mendelssohn_Bartholdy|Felix Mendelssohn]].</pre></div>
The question now arises as to how we can continue the zeta function into the critical strip in a way which supports the connection with tuning and the claims above. There are various approaches to this, but perhaps the simplest is the use of the [[http://en.wikipedia.org/wiki/Dirichlet_eta_function|Dirichlet eta function]] which was introduced to mathematics by [[http://en.wikipedia.org/wiki/Johann_Peter_Gustav_Lejeune_Dirichlet|Johann Peter Gustav Lejeune Dirichlet]], who despite his name was a German and the brother-in-law of [[http://en.wikipedia.org/wiki/Felix_Mendelssohn_Bartholdy|Felix Mendelssohn]].
 
The zeta function has a [[http://mathworld.wolfram.com/SimplePole.html|simple pole]] at z=1 which forms a barrier against continuing it with its [[http://en.wikipedia.org/wiki/Euler_product|Euler product]] or [[http://en.wikipedia.org/wiki/Dirichlet_series|Dirichlet series]] representation. We could subtract off the pole, or multiply by a factor of (z-1), but at the expense of losing the character of a Dirichlet series or Euler product. A better method is to multiply by a factor of (1-2^(1-z)), leading to the eta function:
 
[[math]]
\eta(z) = (1-2^(1-z))\zeta(s) = \sum_{n=1}^\infty (-1)^(n-1) n^(-z)
= \frac{1}{1^z} - \frac{1}{2^z} + \frac{1}{3^z} - \frac{1}{4^z} + \cdots
[[math]]
 
</pre></div>
<h4>Original HTML content:</h4>
<h4>Original HTML content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;The Riemann Zeta Function and Tuning&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;!-- ws:start:WikiTextTocRule:11:&amp;lt;img id=&amp;quot;wikitext@@toc@@flat&amp;quot; class=&amp;quot;WikiMedia WikiMediaTocFlat&amp;quot; title=&amp;quot;Table of Contents&amp;quot; src=&amp;quot;/site/embedthumbnail/toc/flat?w=100&amp;amp;h=16&amp;quot;/&amp;gt; --&gt;&lt;!-- ws:end:WikiTextTocRule:11 --&gt;&lt;!-- ws:start:WikiTextTocRule:12: --&gt;&lt;a href="#Preliminaries"&gt;Preliminaries&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:12 --&gt;&lt;!-- ws:start:WikiTextTocRule:13: --&gt; | &lt;a href="#Into the critical strip"&gt;Into the critical strip&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:13 --&gt;&lt;!-- ws:start:WikiTextTocRule:14: --&gt;
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;The Riemann Zeta Function and Tuning&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;!-- ws:start:WikiTextTocRule:12:&amp;lt;img id=&amp;quot;wikitext@@toc@@flat&amp;quot; class=&amp;quot;WikiMedia WikiMediaTocFlat&amp;quot; title=&amp;quot;Table of Contents&amp;quot; src=&amp;quot;/site/embedthumbnail/toc/flat?w=100&amp;amp;h=16&amp;quot;/&amp;gt; --&gt;&lt;!-- ws:end:WikiTextTocRule:12 --&gt;&lt;!-- ws:start:WikiTextTocRule:13: --&gt;&lt;a href="#Preliminaries"&gt;Preliminaries&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:13 --&gt;&lt;!-- ws:start:WikiTextTocRule:14: --&gt; | &lt;a href="#Into the critical strip"&gt;Into the critical strip&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:14 --&gt;&lt;!-- ws:start:WikiTextTocRule:15: --&gt;
&lt;!-- ws:end:WikiTextTocRule:14 --&gt;&lt;!-- ws:start:WikiTextHeadingRule:7:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc0"&gt;&lt;a name="Preliminaries"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:7 --&gt;Preliminaries&lt;/h1&gt;
&lt;!-- ws:end:WikiTextTocRule:15 --&gt;&lt;!-- ws:start:WikiTextHeadingRule:8:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc0"&gt;&lt;a name="Preliminaries"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:8 --&gt;Preliminaries&lt;/h1&gt;
  Suppose x is a continuous variable equal to the reciprocal of the step size of an equal division of the octave in fractions of an octave. For example, if the step size was 15 cents, then x = 1200/15 = 80, and we would be considering 80edo in pure octave tuning. If ||x|| denotes x minus x rounded to the nearest integer, or in other words the x - floor(x+1/2), then the &lt;a class="wiki_link" href="/Tenney-Euclidean%20metrics"&gt;Tenney-Euclidean error&lt;/a&gt; for the &lt;a class="wiki_link" href="/p-limit"&gt;p-limit&lt;/a&gt; &lt;a class="wiki_link" href="/val"&gt;val&lt;/a&gt; obtained by rounding log2(q) x to the nearest integer for each prime q up to p will be&lt;br /&gt;
  Suppose x is a continuous variable equal to the reciprocal of the step size of an equal division of the octave in fractions of an octave. For example, if the step size was 15 cents, then x = 1200/15 = 80, and we would be considering 80edo in pure octave tuning. If ||x|| denotes x minus x rounded to the nearest integer, or in other words the x - floor(x+1/2), then the &lt;a class="wiki_link" href="/Tenney-Euclidean%20metrics"&gt;Tenney-Euclidean error&lt;/a&gt; for the &lt;a class="wiki_link" href="/p-limit"&gt;p-limit&lt;/a&gt; &lt;a class="wiki_link" href="/val"&gt;val&lt;/a&gt; obtained by rounding log2(q) x to the nearest integer for each prime q up to p will be&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
Line 112: Line 121:
  --&gt;&lt;script type="math/tex"&gt;\exp(F_s(x)) = |\zeta(s + 2 \pi i x/\ln 2)|&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:6 --&gt;&lt;br /&gt;
  --&gt;&lt;script type="math/tex"&gt;\exp(F_s(x)) = |\zeta(s + 2 \pi i x/\ln 2)|&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:6 --&gt;&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
so that we see that the absolute value of the zeta function serves to measure error of an equal division.&lt;br /&gt;
so that we see that the absolute value of the zeta function serves to measure the error of an equal division.&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:10:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc1"&gt;&lt;a name="Into the critical strip"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:10 --&gt;Into the critical strip&lt;/h1&gt;
So long as s is greater than or equal to one, the absolute value of the zeta function can be seen as an error measurement. However, the rationale for that view of things departs when s is less than one, particularly in the &lt;a class="wiki_link_ext" href="http://mathworld.wolfram.com/CriticalStrip.html" rel="nofollow"&gt;critical strip&lt;/a&gt;, when s lies between zero and one. As s approaches the value s=1/2 of the &lt;a class="wiki_link_ext" href="http://mathworld.wolfram.com/CriticalLine.html" rel="nofollow"&gt;critical line&lt;/a&gt;, the information content, so to speak, of the zeta function concerning higher primes increases and it behaves increasingly like a badness measure (or more correctly, since we have inverted it, like a goodness measure.) The quasi-symmetric &lt;a class="wiki_link_ext" href="http://planetmath.org/encyclopedia/FunctionalEquationOfTheRiemannZetaFunction.html" rel="nofollow"&gt;functional equation&lt;/a&gt; of the zeta function tells us that past the critical line the information content starts to decrease again, with 1-s and s having the same information content. Hence it is the zeta function between s=1/2 and s=1, and especially the zeta function along the critical line s=1/2, which is of the most interest.&lt;br /&gt;
&lt;br /&gt;
The question now arises as to how we can continue the zeta function into the critical strip in a way which supports the connection with tuning and the claims above. There are various approaches to this, but perhaps the simplest is the use of the &lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Dirichlet_eta_function" rel="nofollow"&gt;Dirichlet eta function&lt;/a&gt; which was introduced to mathematics by &lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Johann_Peter_Gustav_Lejeune_Dirichlet" rel="nofollow"&gt;Johann Peter Gustav Lejeune Dirichlet&lt;/a&gt;, who despite his name was a German and the brother-in-law of &lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Felix_Mendelssohn_Bartholdy" rel="nofollow"&gt;Felix Mendelssohn&lt;/a&gt;.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:9:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc1"&gt;&lt;a name="Into the critical strip"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:9 --&gt;Into the critical strip&lt;/h1&gt;
The zeta function has a &lt;a class="wiki_link_ext" href="http://mathworld.wolfram.com/SimplePole.html" rel="nofollow"&gt;simple pole&lt;/a&gt; at z=1 which forms a barrier against continuing it with its &lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Euler_product" rel="nofollow"&gt;Euler product&lt;/a&gt; or &lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Dirichlet_series" rel="nofollow"&gt;Dirichlet series&lt;/a&gt; representation. We could subtract off the pole, or multiply by a factor of (z-1), but at the expense of losing the character of a Dirichlet series or Euler product. A better method is to multiply by a factor of (1-2^(1-z)), leading to the eta function:&lt;br /&gt;
So long as s is greater than or equal to one, the absolute value of the zeta function can be seen as an error measurement. However, the rationale for that view of things departs when s is less than one, particularly in the &lt;a class="wiki_link_ext" href="http://mathworld.wolfram.com/CriticalStrip.html" rel="nofollow"&gt;critical strip&lt;/a&gt;, when s lies between zero and one. As s approaches the value s=1/2 of the &lt;a class="wiki_link_ext" href="http://mathworld.wolfram.com/CriticalLine.html" rel="nofollow"&gt;critical line&lt;/a&gt;, the information content, so to speak, of the zeta function concerning higher primes increases and it behaves increasingly like a badness measure (or more correctly, since we have inverted it, like a goodness measure.) Beyond the critical line, the quasi-symmetric &lt;a class="wiki_link_ext" href="http://planetmath.org/encyclopedia/FunctionalEquationOfTheRiemannZetaFunction.html" rel="nofollow"&gt;functional equation&lt;/a&gt; of the zeta function tells us that past the critical line the information content starts to decrease again, with 1-s and s having the same information content. Hence it is the zeta function between s=1/2 and s=1, and especially the zeta function along the critical line s=1/2, which of the most interest.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
Hence the question arises as to how we can continue the zeta function into the critical strip in a way which supports the connection with tuning and the claims above. There are various approaches to this, but perhaps the simplest is the use of the &lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Dirichlet_eta_function" rel="nofollow"&gt;Dirichlet eta function&lt;/a&gt; which was introduced to mathematics by &lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Johann_Peter_Gustav_Lejeune_Dirichlet" rel="nofollow"&gt;Johann Peter Gustav Lejeune Dirichlet&lt;/a&gt;, who despite his name was a German and the brother-in-law of &lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Felix_Mendelssohn_Bartholdy" rel="nofollow"&gt;Felix Mendelssohn&lt;/a&gt;.&lt;/body&gt;&lt;/html&gt;</pre></div>
&lt;!-- ws:start:WikiTextMathRule:7:
[[math]]&amp;lt;br/&amp;gt;
\eta(z) = (1-2^(1-z))\zeta(s) = \sum_{n=1}^\infty (-1)^(n-1) n^(-z)&amp;lt;br /&amp;gt;
= \frac{1}{1^z} - \frac{1}{2^z} + \frac{1}{3^z} - \frac{1}{4^z} + \cdots&amp;lt;br/&amp;gt;[[math]]
--&gt;&lt;script type="math/tex"&gt;\eta(z) = (1-2^(1-z))\zeta(s) = \sum_{n=1}^\infty (-1)^(n-1) n^(-z)
= \frac{1}{1^z} - \frac{1}{2^z} + \frac{1}{3^z} - \frac{1}{4^z} + \cdots&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:7 --&gt;&lt;/body&gt;&lt;/html&gt;</pre></div>