The Riemann zeta function and tuning: Difference between revisions
Wikispaces>genewardsmith **Imported revision 219003482 - Original comment: ** |
Wikispaces>genewardsmith **Imported revision 219030976 - Original comment: ** |
||
Line 1: | Line 1: | ||
<h2>IMPORTED REVISION FROM WIKISPACES</h2> | <h2>IMPORTED REVISION FROM WIKISPACES</h2> | ||
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | ||
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2011-04-11 | : This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2011-04-11 03:31:43 UTC</tt>.<br> | ||
: The original revision id was <tt> | : The original revision id was <tt>219030976</tt>.<br> | ||
: The revision comment was: <tt></tt><br> | : The revision comment was: <tt></tt><br> | ||
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | ||
Line 8: | Line 8: | ||
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">[[toc|flat]] | <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">[[toc|flat]] | ||
=Preliminaries= | =Preliminaries= | ||
Suppose x is a continuous variable equal to the reciprocal of the step size of an equal division of the octave in fractions of an octave. For example, if the step size was 15 cents, then x = 1200/15 = 80, and we would be considering 80edo in pure octave tuning. If ||x|| denotes x minus x rounded to the nearest integer, or in other words the x - floor(x+1/2), then the [[Tenney-Euclidean metrics|Tenney-Euclidean error]] for the [[p-limit]] [[val]] obtained by rounding log2(q) x to the nearest integer for each prime q up to p will be | Suppose x is a continuous variable equal to the reciprocal of the step size of an equal division of the octave in fractions of an octave. For example, if the step size was 15 cents, then x = 1200/15 = 80, and we would be considering 80edo in pure octave tuning. If ||x|| denotes x minus x rounded to the nearest integer, or in other words the function x - floor(x+1/2), then the [[Tenney-Euclidean metrics|Tenney-Euclidean error]] for the [[p-limit]] [[val]] obtained by rounding log2(q) x to the nearest integer for each prime q up to p will be | ||
[[math]] | [[math]] | ||
Line 118: | Line 118: | ||
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html"><html><head><title>The Riemann Zeta Function and Tuning</title></head><body><!-- ws:start:WikiTextTocRule:22:&lt;img id=&quot;wikitext@@toc@@flat&quot; class=&quot;WikiMedia WikiMediaTocFlat&quot; title=&quot;Table of Contents&quot; src=&quot;/site/embedthumbnail/toc/flat?w=100&amp;h=16&quot;/&gt; --><!-- ws:end:WikiTextTocRule:22 --><!-- ws:start:WikiTextTocRule:23: --><a href="#Preliminaries">Preliminaries</a><!-- ws:end:WikiTextTocRule:23 --><!-- ws:start:WikiTextTocRule:24: --> | <a href="#Into the critical strip">Into the critical strip</a><!-- ws:end:WikiTextTocRule:24 --><!-- ws:start:WikiTextTocRule:25: --> | <a href="#The Z function">The Z function</a><!-- ws:end:WikiTextTocRule:25 --><!-- ws:start:WikiTextTocRule:26: --> | <a href="#Computing zeta">Computing zeta</a><!-- ws:end:WikiTextTocRule:26 --><!-- ws:start:WikiTextTocRule:27: --> | <a href="#Links">Links</a><!-- ws:end:WikiTextTocRule:27 --><!-- ws:start:WikiTextTocRule:28: --> | <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html"><html><head><title>The Riemann Zeta Function and Tuning</title></head><body><!-- ws:start:WikiTextTocRule:22:&lt;img id=&quot;wikitext@@toc@@flat&quot; class=&quot;WikiMedia WikiMediaTocFlat&quot; title=&quot;Table of Contents&quot; src=&quot;/site/embedthumbnail/toc/flat?w=100&amp;h=16&quot;/&gt; --><!-- ws:end:WikiTextTocRule:22 --><!-- ws:start:WikiTextTocRule:23: --><a href="#Preliminaries">Preliminaries</a><!-- ws:end:WikiTextTocRule:23 --><!-- ws:start:WikiTextTocRule:24: --> | <a href="#Into the critical strip">Into the critical strip</a><!-- ws:end:WikiTextTocRule:24 --><!-- ws:start:WikiTextTocRule:25: --> | <a href="#The Z function">The Z function</a><!-- ws:end:WikiTextTocRule:25 --><!-- ws:start:WikiTextTocRule:26: --> | <a href="#Computing zeta">Computing zeta</a><!-- ws:end:WikiTextTocRule:26 --><!-- ws:start:WikiTextTocRule:27: --> | <a href="#Links">Links</a><!-- ws:end:WikiTextTocRule:27 --><!-- ws:start:WikiTextTocRule:28: --> | ||
<!-- ws:end:WikiTextTocRule:28 --><!-- ws:start:WikiTextHeadingRule:12:&lt;h1&gt; --><h1 id="toc0"><a name="Preliminaries"></a><!-- ws:end:WikiTextHeadingRule:12 -->Preliminaries</h1> | <!-- ws:end:WikiTextTocRule:28 --><!-- ws:start:WikiTextHeadingRule:12:&lt;h1&gt; --><h1 id="toc0"><a name="Preliminaries"></a><!-- ws:end:WikiTextHeadingRule:12 -->Preliminaries</h1> | ||
Suppose x is a continuous variable equal to the reciprocal of the step size of an equal division of the octave in fractions of an octave. For example, if the step size was 15 cents, then x = 1200/15 = 80, and we would be considering 80edo in pure octave tuning. If ||x|| denotes x minus x rounded to the nearest integer, or in other words the x - floor(x+1/2), then the <a class="wiki_link" href="/Tenney-Euclidean%20metrics">Tenney-Euclidean error</a> for the <a class="wiki_link" href="/p-limit">p-limit</a> <a class="wiki_link" href="/val">val</a> obtained by rounding log2(q) x to the nearest integer for each prime q up to p will be<br /> | Suppose x is a continuous variable equal to the reciprocal of the step size of an equal division of the octave in fractions of an octave. For example, if the step size was 15 cents, then x = 1200/15 = 80, and we would be considering 80edo in pure octave tuning. If ||x|| denotes x minus x rounded to the nearest integer, or in other words the function x - floor(x+1/2), then the <a class="wiki_link" href="/Tenney-Euclidean%20metrics">Tenney-Euclidean error</a> for the <a class="wiki_link" href="/p-limit">p-limit</a> <a class="wiki_link" href="/val">val</a> obtained by rounding log2(q) x to the nearest integer for each prime q up to p will be<br /> | ||
<br /> | <br /> | ||
<!-- ws:start:WikiTextMathRule:0: | <!-- ws:start:WikiTextMathRule:0: |