The Riemann zeta function and tuning: Difference between revisions

Wikispaces>genewardsmith
**Imported revision 296850066 - Original comment: **
Wikispaces>genewardsmith
**Imported revision 314861008 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2012-01-30 21:38:13 UTC</tt>.<br>
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2012-03-26 20:57:24 UTC</tt>.<br>
: The original revision id was <tt>296850066</tt>.<br>
: The original revision id was <tt>314861008</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
Line 36: Line 36:


[[math]]
[[math]]
E_s(x) = \sum_1^\infty \frac{\Lambda(n)}{\ln n} \frac{1 - \cos(2 \pi x)}{n^s}
E_s(x) = \sum_1^\infty \frac{\Lambda(n)}{\ln n} \frac{1 - \cos(2 \pi x \log_2 n)}{n^s}
[[math]]
[[math]]


Line 42: Line 42:


[[math]]
[[math]]
F_s(x) = \sum_1^\infty \frac{\Lambda(n)}{\ln n} \frac{\cos(2 \pi x)}{n^s}
F_s(x) = \sum_1^\infty \frac{\Lambda(n)}{\ln n} \frac{\cos(2 \pi x \log_2 n)}{n^s}
[[math]]
[[math]]


Line 189: Line 189:
&lt;!-- ws:start:WikiTextMathRule:3:
&lt;!-- ws:start:WikiTextMathRule:3:
[[math]]&amp;lt;br/&amp;gt;
[[math]]&amp;lt;br/&amp;gt;
E_s(x) = \sum_1^\infty \frac{\Lambda(n)}{\ln n} \frac{1 - \cos(2 \pi x)}{n^s}&amp;lt;br/&amp;gt;[[math]]
E_s(x) = \sum_1^\infty \frac{\Lambda(n)}{\ln n} \frac{1 - \cos(2 \pi x \log_2 n)}{n^s}&amp;lt;br/&amp;gt;[[math]]
  --&gt;&lt;script type="math/tex"&gt;E_s(x) = \sum_1^\infty \frac{\Lambda(n)}{\ln n} \frac{1 - \cos(2 \pi x)}{n^s}&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:3 --&gt;&lt;br /&gt;
  --&gt;&lt;script type="math/tex"&gt;E_s(x) = \sum_1^\infty \frac{\Lambda(n)}{\ln n} \frac{1 - \cos(2 \pi x \log_2 n)}{n^s}&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:3 --&gt;&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
For any fixed s &amp;gt; 1 this gives a &lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Analytic_function" rel="nofollow"&gt;real analytic function&lt;/a&gt; defined for all x, and hence with all the smoothness properties we could desire. We can define essentially the same function by subtracting it from E_s(1/2)/2:&lt;br /&gt;
For any fixed s &amp;gt; 1 this gives a &lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Analytic_function" rel="nofollow"&gt;real analytic function&lt;/a&gt; defined for all x, and hence with all the smoothness properties we could desire. We can define essentially the same function by subtracting it from E_s(1/2)/2:&lt;br /&gt;
Line 196: Line 196:
&lt;!-- ws:start:WikiTextMathRule:4:
&lt;!-- ws:start:WikiTextMathRule:4:
[[math]]&amp;lt;br/&amp;gt;
[[math]]&amp;lt;br/&amp;gt;
F_s(x) = \sum_1^\infty \frac{\Lambda(n)}{\ln n} \frac{\cos(2 \pi x)}{n^s}&amp;lt;br/&amp;gt;[[math]]
F_s(x) = \sum_1^\infty \frac{\Lambda(n)}{\ln n} \frac{\cos(2 \pi x \log_2 n)}{n^s}&amp;lt;br/&amp;gt;[[math]]
  --&gt;&lt;script type="math/tex"&gt;F_s(x) = \sum_1^\infty \frac{\Lambda(n)}{\ln n} \frac{\cos(2 \pi x)}{n^s}&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:4 --&gt;&lt;br /&gt;
  --&gt;&lt;script type="math/tex"&gt;F_s(x) = \sum_1^\infty \frac{\Lambda(n)}{\ln n} \frac{\cos(2 \pi x \log_2 n)}{n^s}&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:4 --&gt;&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
This now increases to a maximum value for low errors, rather than declining to a minimum. Of more interest is the fact that it is a known mathematical function, which can be expressed in terms of the real part of the logarithm of the &lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Riemann_zeta_function" rel="nofollow"&gt;Riemann zeta function&lt;/a&gt;:&lt;br /&gt;
This now increases to a maximum value for low errors, rather than declining to a minimum. Of more interest is the fact that it is a known mathematical function, which can be expressed in terms of the real part of the logarithm of the &lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Riemann_zeta_function" rel="nofollow"&gt;Riemann zeta function&lt;/a&gt;:&lt;br /&gt;