The Riemann zeta function and tuning: Difference between revisions
Wikispaces>clumma **Imported revision 535153408 - Original comment: ** |
Wikispaces>genewardsmith **Imported revision 556855999 - Original comment: ** |
||
Line 1: | Line 1: | ||
<h2>IMPORTED REVISION FROM WIKISPACES</h2> | <h2>IMPORTED REVISION FROM WIKISPACES</h2> | ||
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | ||
: This revision was by author [[User: | : This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2015-08-18 00:54:53 UTC</tt>.<br> | ||
: The original revision id was <tt> | : The original revision id was <tt>556855999</tt>.<br> | ||
: The revision comment was: <tt></tt><br> | : The revision comment was: <tt></tt><br> | ||
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | ||
Line 114: | Line 114: | ||
=Zeta EDO lists= | =Zeta EDO lists= | ||
If we examine the increasingly larger peak values of |Z(x)|, we find occur with values of x such that Z'(x) = 0 near to integers, so that there is a sequence of [[edo]]s [[1edo|1]], [[2edo|2]], [[3edo|3]], [[4edo|4]], [[5edo|5]], [[7edo|7]], [[10edo|10]], [[12edo|12]], [[19edo|19]], [[22edo|22]], [[27edo|27]], [[31edo|31]], [[41edo|41]], [[53edo|53]], [[72edo|72]], [[99edo|99]], [[118edo|118]], [[130edo|130]], [[152edo|152]], [[171edo|171]], [[217edo|217]], [[224edo|224]], [[270edo|270]], [[342edo|342]], [[422edo|422]], [[441edo|441]], [[494edo|494]], [[742edo|742]], [[764edo|764]], [[935edo|935]], [[954edo|954]], [[1012edo|1012]], [[1106edo|1106]], [[1178edo|1178]], [[1236edo|1236]], [[1395edo|1395]], [[1448edo|1448]], [[1578edo|1578]], [[2460edo|2460]], [[2684edo|2684]], [[3395edo|3395]], [[5585edo|5585]], [[6079edo|6079]], [[7033edo|7033]], [[8269edo|8269]], [[8539edo|8539]], [[11664edo|11664]], [[14348edo|14348]], [[16808edo|16808]], [[28742edo|28742]], [[34691edo|34691]] ... of //zeta peak edos//. This is listed in the On-Line Encyclopedia of Integer Sequences as [[http://oeis.org/A117536|sequence A117536]]. | If we examine the increasingly larger peak values of |Z(x)|, we find they occur with values of x such that Z'(x) = 0 near to integers, so that there is a sequence of [[edo]]s [[1edo|1]], [[2edo|2]], [[3edo|3]], [[4edo|4]], [[5edo|5]], [[7edo|7]], [[10edo|10]], [[12edo|12]], [[19edo|19]], [[22edo|22]], [[27edo|27]], [[31edo|31]], [[41edo|41]], [[53edo|53]], [[72edo|72]], [[99edo|99]], [[118edo|118]], [[130edo|130]], [[152edo|152]], [[171edo|171]], [[217edo|217]], [[224edo|224]], [[270edo|270]], [[342edo|342]], [[422edo|422]], [[441edo|441]], [[494edo|494]], [[742edo|742]], [[764edo|764]], [[935edo|935]], [[954edo|954]], [[1012edo|1012]], [[1106edo|1106]], [[1178edo|1178]], [[1236edo|1236]], [[1395edo|1395]], [[1448edo|1448]], [[1578edo|1578]], [[2460edo|2460]], [[2684edo|2684]], [[3395edo|3395]], [[5585edo|5585]], [[6079edo|6079]], [[7033edo|7033]], [[8269edo|8269]], [[8539edo|8539]], [[11664edo|11664]], [[14348edo|14348]], [[16808edo|16808]], [[28742edo|28742]], [[34691edo|34691]] ... of //zeta peak edos//. This is listed in the On-Line Encyclopedia of Integer Sequences as [[http://oeis.org/A117536|sequence A117536]]. | ||
Similarly, if we take the integral of |Z(x)| between successive zeros, and use this to define a sequence of increasing values for this integral, these again occur near integers and define an edo. This sequence, the //zeta integral edos//, goes [[2edo|2]], [[5edo|5]], [[7edo|7]], [[12edo|12]], [[19edo|19]], [[31edo|31]], [[41edo|41]], [[53edo|53]], [[72edo|72]], [[130edo|130]], [[171edo|171]], [[224edo|224]], [[270edo|270]], [[764edo|764]], [[954edo|954]], [[1178edo|1178]], [[1395edo|1395]], [[1578edo|1578]], [[2684edo|2684]], [[3395edo|3395]], [[7033edo|7033]], [[8269edo|8269]], [[8539edo|8539]], [[14348edo|14348]], [[16808edo|16808]], [[36269edo|36269]], [[58973edo|58973]] ... This is listed in the OEIS as [[http://oeis.org/A117538|sequence A117538]]. The zeta integral edos seem to be, on the whole, the best of the zeta function sequences, but the other two should not be discounted; the peak values seem to give more weight to the lower primes, and the zeta gap sequence discussed below to the higher primes. | Similarly, if we take the integral of |Z(x)| between successive zeros, and use this to define a sequence of increasing values for this integral, these again occur near integers and define an edo. This sequence, the //zeta integral edos//, goes [[2edo|2]], [[5edo|5]], [[7edo|7]], [[12edo|12]], [[19edo|19]], [[31edo|31]], [[41edo|41]], [[53edo|53]], [[72edo|72]], [[130edo|130]], [[171edo|171]], [[224edo|224]], [[270edo|270]], [[764edo|764]], [[954edo|954]], [[1178edo|1178]], [[1395edo|1395]], [[1578edo|1578]], [[2684edo|2684]], [[3395edo|3395]], [[7033edo|7033]], [[8269edo|8269]], [[8539edo|8539]], [[14348edo|14348]], [[16808edo|16808]], [[36269edo|36269]], [[58973edo|58973]] ... This is listed in the OEIS as [[http://oeis.org/A117538|sequence A117538]]. The zeta integral edos seem to be, on the whole, the best of the zeta function sequences, but the other two should not be discounted; the peak values seem to give more weight to the lower primes, and the zeta gap sequence discussed below to the higher primes. | ||
Line 299: | Line 299: | ||
<br /> | <br /> | ||
<!-- ws:start:WikiTextHeadingRule:21:&lt;h1&gt; --><h1 id="toc3"><a name="Zeta EDO lists"></a><!-- ws:end:WikiTextHeadingRule:21 -->Zeta EDO lists</h1> | <!-- ws:start:WikiTextHeadingRule:21:&lt;h1&gt; --><h1 id="toc3"><a name="Zeta EDO lists"></a><!-- ws:end:WikiTextHeadingRule:21 -->Zeta EDO lists</h1> | ||
If we examine the increasingly larger peak values of |Z(x)|, we find occur with values of x such that Z'(x) = 0 near to integers, so that there is a sequence of <a class="wiki_link" href="/edo">edo</a>s <a class="wiki_link" href="/1edo">1</a>, <a class="wiki_link" href="/2edo">2</a>, <a class="wiki_link" href="/3edo">3</a>, <a class="wiki_link" href="/4edo">4</a>, <a class="wiki_link" href="/5edo">5</a>, <a class="wiki_link" href="/7edo">7</a>, <a class="wiki_link" href="/10edo">10</a>, <a class="wiki_link" href="/12edo">12</a>, <a class="wiki_link" href="/19edo">19</a>, <a class="wiki_link" href="/22edo">22</a>, <a class="wiki_link" href="/27edo">27</a>, <a class="wiki_link" href="/31edo">31</a>, <a class="wiki_link" href="/41edo">41</a>, <a class="wiki_link" href="/53edo">53</a>, <a class="wiki_link" href="/72edo">72</a>, <a class="wiki_link" href="/99edo">99</a>, <a class="wiki_link" href="/118edo">118</a>, <a class="wiki_link" href="/130edo">130</a>, <a class="wiki_link" href="/152edo">152</a>, <a class="wiki_link" href="/171edo">171</a>, <a class="wiki_link" href="/217edo">217</a>, <a class="wiki_link" href="/224edo">224</a>, <a class="wiki_link" href="/270edo">270</a>, <a class="wiki_link" href="/342edo">342</a>, <a class="wiki_link" href="/422edo">422</a>, <a class="wiki_link" href="/441edo">441</a>, <a class="wiki_link" href="/494edo">494</a>, <a class="wiki_link" href="/742edo">742</a>, <a class="wiki_link" href="/764edo">764</a>, <a class="wiki_link" href="/935edo">935</a>, <a class="wiki_link" href="/954edo">954</a>, <a class="wiki_link" href="/1012edo">1012</a>, <a class="wiki_link" href="/1106edo">1106</a>, <a class="wiki_link" href="/1178edo">1178</a>, <a class="wiki_link" href="/1236edo">1236</a>, <a class="wiki_link" href="/1395edo">1395</a>, <a class="wiki_link" href="/1448edo">1448</a>, <a class="wiki_link" href="/1578edo">1578</a>, <a class="wiki_link" href="/2460edo">2460</a>, <a class="wiki_link" href="/2684edo">2684</a>, <a class="wiki_link" href="/3395edo">3395</a>, <a class="wiki_link" href="/5585edo">5585</a>, <a class="wiki_link" href="/6079edo">6079</a>, <a class="wiki_link" href="/7033edo">7033</a>, <a class="wiki_link" href="/8269edo">8269</a>, <a class="wiki_link" href="/8539edo">8539</a>, <a class="wiki_link" href="/11664edo">11664</a>, <a class="wiki_link" href="/14348edo">14348</a>, <a class="wiki_link" href="/16808edo">16808</a>, <a class="wiki_link" href="/28742edo">28742</a>, <a class="wiki_link" href="/34691edo">34691</a> ... of <em>zeta peak edos</em>. This is listed in the On-Line Encyclopedia of Integer Sequences as <a class="wiki_link_ext" href="http://oeis.org/A117536" rel="nofollow">sequence A117536</a>.<br /> | If we examine the increasingly larger peak values of |Z(x)|, we find they occur with values of x such that Z'(x) = 0 near to integers, so that there is a sequence of <a class="wiki_link" href="/edo">edo</a>s <a class="wiki_link" href="/1edo">1</a>, <a class="wiki_link" href="/2edo">2</a>, <a class="wiki_link" href="/3edo">3</a>, <a class="wiki_link" href="/4edo">4</a>, <a class="wiki_link" href="/5edo">5</a>, <a class="wiki_link" href="/7edo">7</a>, <a class="wiki_link" href="/10edo">10</a>, <a class="wiki_link" href="/12edo">12</a>, <a class="wiki_link" href="/19edo">19</a>, <a class="wiki_link" href="/22edo">22</a>, <a class="wiki_link" href="/27edo">27</a>, <a class="wiki_link" href="/31edo">31</a>, <a class="wiki_link" href="/41edo">41</a>, <a class="wiki_link" href="/53edo">53</a>, <a class="wiki_link" href="/72edo">72</a>, <a class="wiki_link" href="/99edo">99</a>, <a class="wiki_link" href="/118edo">118</a>, <a class="wiki_link" href="/130edo">130</a>, <a class="wiki_link" href="/152edo">152</a>, <a class="wiki_link" href="/171edo">171</a>, <a class="wiki_link" href="/217edo">217</a>, <a class="wiki_link" href="/224edo">224</a>, <a class="wiki_link" href="/270edo">270</a>, <a class="wiki_link" href="/342edo">342</a>, <a class="wiki_link" href="/422edo">422</a>, <a class="wiki_link" href="/441edo">441</a>, <a class="wiki_link" href="/494edo">494</a>, <a class="wiki_link" href="/742edo">742</a>, <a class="wiki_link" href="/764edo">764</a>, <a class="wiki_link" href="/935edo">935</a>, <a class="wiki_link" href="/954edo">954</a>, <a class="wiki_link" href="/1012edo">1012</a>, <a class="wiki_link" href="/1106edo">1106</a>, <a class="wiki_link" href="/1178edo">1178</a>, <a class="wiki_link" href="/1236edo">1236</a>, <a class="wiki_link" href="/1395edo">1395</a>, <a class="wiki_link" href="/1448edo">1448</a>, <a class="wiki_link" href="/1578edo">1578</a>, <a class="wiki_link" href="/2460edo">2460</a>, <a class="wiki_link" href="/2684edo">2684</a>, <a class="wiki_link" href="/3395edo">3395</a>, <a class="wiki_link" href="/5585edo">5585</a>, <a class="wiki_link" href="/6079edo">6079</a>, <a class="wiki_link" href="/7033edo">7033</a>, <a class="wiki_link" href="/8269edo">8269</a>, <a class="wiki_link" href="/8539edo">8539</a>, <a class="wiki_link" href="/11664edo">11664</a>, <a class="wiki_link" href="/14348edo">14348</a>, <a class="wiki_link" href="/16808edo">16808</a>, <a class="wiki_link" href="/28742edo">28742</a>, <a class="wiki_link" href="/34691edo">34691</a> ... of <em>zeta peak edos</em>. This is listed in the On-Line Encyclopedia of Integer Sequences as <a class="wiki_link_ext" href="http://oeis.org/A117536" rel="nofollow">sequence A117536</a>.<br /> | ||
<br /> | <br /> | ||
Similarly, if we take the integral of |Z(x)| between successive zeros, and use this to define a sequence of increasing values for this integral, these again occur near integers and define an edo. This sequence, the <em>zeta integral edos</em>, goes <a class="wiki_link" href="/2edo">2</a>, <a class="wiki_link" href="/5edo">5</a>, <a class="wiki_link" href="/7edo">7</a>, <a class="wiki_link" href="/12edo">12</a>, <a class="wiki_link" href="/19edo">19</a>, <a class="wiki_link" href="/31edo">31</a>, <a class="wiki_link" href="/41edo">41</a>, <a class="wiki_link" href="/53edo">53</a>, <a class="wiki_link" href="/72edo">72</a>, <a class="wiki_link" href="/130edo">130</a>, <a class="wiki_link" href="/171edo">171</a>, <a class="wiki_link" href="/224edo">224</a>, <a class="wiki_link" href="/270edo">270</a>, <a class="wiki_link" href="/764edo">764</a>, <a class="wiki_link" href="/954edo">954</a>, <a class="wiki_link" href="/1178edo">1178</a>, <a class="wiki_link" href="/1395edo">1395</a>, <a class="wiki_link" href="/1578edo">1578</a>, <a class="wiki_link" href="/2684edo">2684</a>, <a class="wiki_link" href="/3395edo">3395</a>, <a class="wiki_link" href="/7033edo">7033</a>, <a class="wiki_link" href="/8269edo">8269</a>, <a class="wiki_link" href="/8539edo">8539</a>, <a class="wiki_link" href="/14348edo">14348</a>, <a class="wiki_link" href="/16808edo">16808</a>, <a class="wiki_link" href="/36269edo">36269</a>, <a class="wiki_link" href="/58973edo">58973</a> ... This is listed in the OEIS as <a class="wiki_link_ext" href="http://oeis.org/A117538" rel="nofollow">sequence A117538</a>. The zeta integral edos seem to be, on the whole, the best of the zeta function sequences, but the other two should not be discounted; the peak values seem to give more weight to the lower primes, and the zeta gap sequence discussed below to the higher primes.<br /> | Similarly, if we take the integral of |Z(x)| between successive zeros, and use this to define a sequence of increasing values for this integral, these again occur near integers and define an edo. This sequence, the <em>zeta integral edos</em>, goes <a class="wiki_link" href="/2edo">2</a>, <a class="wiki_link" href="/5edo">5</a>, <a class="wiki_link" href="/7edo">7</a>, <a class="wiki_link" href="/12edo">12</a>, <a class="wiki_link" href="/19edo">19</a>, <a class="wiki_link" href="/31edo">31</a>, <a class="wiki_link" href="/41edo">41</a>, <a class="wiki_link" href="/53edo">53</a>, <a class="wiki_link" href="/72edo">72</a>, <a class="wiki_link" href="/130edo">130</a>, <a class="wiki_link" href="/171edo">171</a>, <a class="wiki_link" href="/224edo">224</a>, <a class="wiki_link" href="/270edo">270</a>, <a class="wiki_link" href="/764edo">764</a>, <a class="wiki_link" href="/954edo">954</a>, <a class="wiki_link" href="/1178edo">1178</a>, <a class="wiki_link" href="/1395edo">1395</a>, <a class="wiki_link" href="/1578edo">1578</a>, <a class="wiki_link" href="/2684edo">2684</a>, <a class="wiki_link" href="/3395edo">3395</a>, <a class="wiki_link" href="/7033edo">7033</a>, <a class="wiki_link" href="/8269edo">8269</a>, <a class="wiki_link" href="/8539edo">8539</a>, <a class="wiki_link" href="/14348edo">14348</a>, <a class="wiki_link" href="/16808edo">16808</a>, <a class="wiki_link" href="/36269edo">36269</a>, <a class="wiki_link" href="/58973edo">58973</a> ... This is listed in the OEIS as <a class="wiki_link_ext" href="http://oeis.org/A117538" rel="nofollow">sequence A117538</a>. The zeta integral edos seem to be, on the whole, the best of the zeta function sequences, but the other two should not be discounted; the peak values seem to give more weight to the lower primes, and the zeta gap sequence discussed below to the higher primes.<br /> |