Hodge dual: Difference between revisions

Wikispaces>genewardsmith
**Imported revision 289018701 - Original comment: **
Wikispaces>genewardsmith
**Imported revision 289018761 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2012-01-02 00:39:00 UTC</tt>.<br>
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2012-01-02 00:40:25 UTC</tt>.<br>
: The original revision id was <tt>289018701</tt>.<br>
: The original revision id was <tt>289018761</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
Line 20: Line 20:


=Using the dual=
=Using the dual=
The dual allows one to find the wedgie, which is a normalized multival, by wedging together monzos and then taking the dual. For instance from M = |0 3 -2 0&gt;∧|-2 1 -1 1&gt; = ||6 -4 0 -1 3 -2&gt;&gt; considered above, we may find the dual Mº as ||6 -4 0 -1 3 -2&gt;&gt;º = &lt;&lt;-2 -3 -1 0 4 6||. Normalizing this to a wedgie gives &lt;&lt;2 3 1 0 -4 -6||, the wedgie for bug temperament. Then if W is the wedgie for ennealimmal considered above, W∧Mº = &lt;W|M&gt; = 1. We can also take a multival, and use the dual to get a corresponding mulitmonzo, and then use the same method described on the [[abstract regular temperament]] page for extracting a normal val list from a multival to get a normal comma list from the multimonzo.</pre></div>
The dual allows one to find the wedgie, which is a normalized multival, by wedging together monzos and then taking the dual. For instance from M = |0 3 -2 0&gt;∧|-2 1 -1 1&gt;, which is ||6 -4 0 -1 3 -2&gt;&gt;, considered above, we may find the dual Mº as ||6 -4 0 -1 3 -2&gt;&gt;º = &lt;&lt;-2 -3 -1 0 4 6||. Normalizing this to a wedgie gives &lt;&lt;2 3 1 0 -4 -6||, the wedgie for bug temperament. Then if W is the wedgie for ennealimmal considered above, W∧Mº = &lt;W|M&gt; = 1. We can also take a multival, and use the dual to get a corresponding mulitmonzo, and then use the same method described on the [[abstract regular temperament]] page for extracting a normal val list from a multival to get a normal comma list from the multimonzo.</pre></div>
<h4>Original HTML content:</h4>
<h4>Original HTML content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;The dual&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;!-- ws:start:WikiTextTocRule:10:&amp;lt;img id=&amp;quot;wikitext@@toc@@flat&amp;quot; class=&amp;quot;WikiMedia WikiMediaTocFlat&amp;quot; title=&amp;quot;Table of Contents&amp;quot; src=&amp;quot;/site/embedthumbnail/toc/flat?w=100&amp;amp;h=16&amp;quot;/&amp;gt; --&gt;&lt;!-- ws:end:WikiTextTocRule:10 --&gt;&lt;!-- ws:start:WikiTextTocRule:11: --&gt;&lt;a href="#The bracket"&gt;The bracket&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:11 --&gt;&lt;!-- ws:start:WikiTextTocRule:12: --&gt; | &lt;a href="#The dual"&gt;The dual&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:12 --&gt;&lt;!-- ws:start:WikiTextTocRule:13: --&gt; | &lt;a href="#Computing the dual"&gt;Computing the dual&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:13 --&gt;&lt;!-- ws:start:WikiTextTocRule:14: --&gt; | &lt;a href="#Using the dual"&gt;Using the dual&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:14 --&gt;&lt;!-- ws:start:WikiTextTocRule:15: --&gt; | &lt;a href="#x||6 -4 0 -1 3 -2&amp;gt;&amp;gt; considered above, we may find the dual Mº as ||6 -4 0 -1 3 -2&amp;gt;&amp;gt;º"&gt; ||6 -4 0 -1 3 -2&amp;gt;&amp;gt; considered above, we may find the dual Mº as ||6 -4 0 -1 3 -2&amp;gt;&amp;gt;º &lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:15 --&gt;&lt;!-- ws:start:WikiTextTocRule:16: --&gt;
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;The dual&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;!-- ws:start:WikiTextTocRule:8:&amp;lt;img id=&amp;quot;wikitext@@toc@@flat&amp;quot; class=&amp;quot;WikiMedia WikiMediaTocFlat&amp;quot; title=&amp;quot;Table of Contents&amp;quot; src=&amp;quot;/site/embedthumbnail/toc/flat?w=100&amp;amp;h=16&amp;quot;/&amp;gt; --&gt;&lt;!-- ws:end:WikiTextTocRule:8 --&gt;&lt;!-- ws:start:WikiTextTocRule:9: --&gt;&lt;a href="#The bracket"&gt;The bracket&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:9 --&gt;&lt;!-- ws:start:WikiTextTocRule:10: --&gt; | &lt;a href="#The dual"&gt;The dual&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:10 --&gt;&lt;!-- ws:start:WikiTextTocRule:11: --&gt; | &lt;a href="#Computing the dual"&gt;Computing the dual&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:11 --&gt;&lt;!-- ws:start:WikiTextTocRule:12: --&gt; | &lt;a href="#Using the dual"&gt;Using the dual&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:12 --&gt;&lt;!-- ws:start:WikiTextTocRule:13: --&gt;
&lt;!-- ws:end:WikiTextTocRule:16 --&gt;&lt;br /&gt;
&lt;!-- ws:end:WikiTextTocRule:13 --&gt;&lt;br /&gt;
Given a k-multival W, there is a &lt;em&gt;dual&lt;/em&gt; k-multimonzo Wº. Similarly, given a k-multimonzo M, there is a dual k-multival Mº. The dual may be defined in terms of the bracket product relating multivals and multimonzos, which we discuss first.&lt;br /&gt;
Given a k-multival W, there is a &lt;em&gt;dual&lt;/em&gt; k-multimonzo Wº. Similarly, given a k-multimonzo M, there is a dual k-multival Mº. The dual may be defined in terms of the bracket product relating multivals and multimonzos, which we discuss first.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
Line 36: Line 36:
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:6:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc3"&gt;&lt;a name="Using the dual"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:6 --&gt;Using the dual&lt;/h1&gt;
&lt;!-- ws:start:WikiTextHeadingRule:6:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc3"&gt;&lt;a name="Using the dual"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:6 --&gt;Using the dual&lt;/h1&gt;
The dual allows one to find the wedgie, which is a normalized multival, by wedging together monzos and then taking the dual. For instance from M = |0 3 -2 0&amp;gt;∧|-2 1 -1 1&amp;gt; &lt;!-- ws:start:WikiTextHeadingRule:8:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc4"&gt;&lt;a name="x||6 -4 0 -1 3 -2&amp;gt;&amp;gt; considered above, we may find the dual Mº as ||6 -4 0 -1 3 -2&amp;gt;&amp;gt;º"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:8 --&gt; ||6 -4 0 -1 3 -2&amp;gt;&amp;gt; considered above, we may find the dual Mº as ||6 -4 0 -1 3 -2&amp;gt;&amp;gt;º &lt;/h1&gt;
The dual allows one to find the wedgie, which is a normalized multival, by wedging together monzos and then taking the dual. For instance from M = |0 3 -2 0&amp;gt;∧|-2 1 -1 1&amp;gt;, which is ||6 -4 0 -1 3 -2&amp;gt;&amp;gt;, considered above, we may find the dual Mº as ||6 -4 0 -1 3 -2&amp;gt;&amp;gt;º = &amp;lt;&amp;lt;-2 -3 -1 0 4 6||. Normalizing this to a wedgie gives &amp;lt;&amp;lt;2 3 1 0 -4 -6||, the wedgie for bug temperament. Then if W is the wedgie for ennealimmal considered above, W∧Mº = &amp;lt;W|M&amp;gt; = 1. We can also take a multival, and use the dual to get a corresponding mulitmonzo, and then use the same method described on the &lt;a class="wiki_link" href="/abstract%20regular%20temperament"&gt;abstract regular temperament&lt;/a&gt; page for extracting a normal val list from a multival to get a normal comma list from the multimonzo.&lt;/body&gt;&lt;/html&gt;</pre></div>
&amp;lt;&amp;lt;-2 -3 -1 0 4 6||. Normalizing this to a wedgie gives &amp;lt;&amp;lt;2 3 1 0 -4 -6||, the wedgie for bug temperament. Then if W is the wedgie for ennealimmal considered above, W∧Mº = &amp;lt;W|M&amp;gt; = 1. We can also take a multival, and use the dual to get a corresponding mulitmonzo, and then use the same method described on the &lt;a class="wiki_link" href="/abstract%20regular%20temperament"&gt;abstract regular temperament&lt;/a&gt; page for extracting a normal val list from a multival to get a normal comma list from the multimonzo.&lt;/body&gt;&lt;/html&gt;</pre></div>