Tenney–Euclidean temperament measures: Difference between revisions

Wikispaces>genewardsmith
**Imported revision 472088034 - Original comment: **
Wikispaces>genewardsmith
**Imported revision 472312938 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2013-11-25 11:42:07 UTC</tt>.<br>
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2013-11-26 02:23:04 UTC</tt>.<br>
: The original revision id was <tt>472088034</tt>.<br>
: The original revision id was <tt>472312938</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
Line 42: Line 42:
\displaystyle G = \sqrt{\frac{n-1}{2n}} \psi = \sqrt{\frac{n-r}{(r+1)n}} \Psi
\displaystyle G = \sqrt{\frac{n-1}{2n}} \psi = \sqrt{\frac{n-r}{(r+1)n}} \Psi
[[math]]
[[math]]
Graham's TE error and val normalized TE error both have the advantage that higher rank temperament error corresponds directly to rank one error: if ξ is the error function and T the TE tuning map, then ξ(T) = ξ(M). On the other hand, TE error as defined here and val normalized error both have the advantage that for tunings T, which are rank one and hence where the two are identical, ξ(T) = ||T∧J||/||T|| is sin θ, where θ is the angle between the J (a unit vector in tuning space under the normalization here) and u = T/||T||, the direction vector for T.</pre></div>
Graham's TE error and val normalized TE error both have the advantage that higher rank temperament error corresponds directly to rank one error, but Graham normalization has the further advantage that in the rank one case, G = sin θ, where θ is the angle between J and the val in question.</pre></div>
<h4>Original HTML content:</h4>
<h4>Original HTML content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;Tenney-Euclidean temperament measures&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;!-- ws:start:WikiTextTocRule:12:&amp;lt;img id=&amp;quot;wikitext@@toc@@flat&amp;quot; class=&amp;quot;WikiMedia WikiMediaTocFlat&amp;quot; title=&amp;quot;Table of Contents&amp;quot; src=&amp;quot;/site/embedthumbnail/toc/flat?w=100&amp;amp;h=16&amp;quot;/&amp;gt; --&gt;&lt;!-- ws:end:WikiTextTocRule:12 --&gt;&lt;!-- ws:start:WikiTextTocRule:13: --&gt;&lt;a href="#Introduction"&gt;Introduction&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:13 --&gt;&lt;!-- ws:start:WikiTextTocRule:14: --&gt; | &lt;a href="#TE Complexity"&gt;TE Complexity&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:14 --&gt;&lt;!-- ws:start:WikiTextTocRule:15: --&gt; | &lt;a href="#TE simple badness"&gt;TE simple badness&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:15 --&gt;&lt;!-- ws:start:WikiTextTocRule:16: --&gt; | &lt;a href="#TE error"&gt;TE error&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:16 --&gt;&lt;!-- ws:start:WikiTextTocRule:17: --&gt;
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;Tenney-Euclidean temperament measures&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;!-- ws:start:WikiTextTocRule:12:&amp;lt;img id=&amp;quot;wikitext@@toc@@flat&amp;quot; class=&amp;quot;WikiMedia WikiMediaTocFlat&amp;quot; title=&amp;quot;Table of Contents&amp;quot; src=&amp;quot;/site/embedthumbnail/toc/flat?w=100&amp;amp;h=16&amp;quot;/&amp;gt; --&gt;&lt;!-- ws:end:WikiTextTocRule:12 --&gt;&lt;!-- ws:start:WikiTextTocRule:13: --&gt;&lt;a href="#Introduction"&gt;Introduction&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:13 --&gt;&lt;!-- ws:start:WikiTextTocRule:14: --&gt; | &lt;a href="#TE Complexity"&gt;TE Complexity&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:14 --&gt;&lt;!-- ws:start:WikiTextTocRule:15: --&gt; | &lt;a href="#TE simple badness"&gt;TE simple badness&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:15 --&gt;&lt;!-- ws:start:WikiTextTocRule:16: --&gt; | &lt;a href="#TE error"&gt;TE error&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:16 --&gt;&lt;!-- ws:start:WikiTextTocRule:17: --&gt;
Line 85: Line 85:
\displaystyle G = \sqrt{\frac{n-1}{2n}} \psi = \sqrt{\frac{n-r}{(r+1)n}} \Psi&amp;lt;br/&amp;gt;[[math]]
\displaystyle G = \sqrt{\frac{n-1}{2n}} \psi = \sqrt{\frac{n-r}{(r+1)n}} \Psi&amp;lt;br/&amp;gt;[[math]]
  --&gt;&lt;script type="math/tex"&gt;\displaystyle G = \sqrt{\frac{n-1}{2n}} \psi = \sqrt{\frac{n-r}{(r+1)n}} \Psi&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:3 --&gt;&lt;br /&gt;
  --&gt;&lt;script type="math/tex"&gt;\displaystyle G = \sqrt{\frac{n-1}{2n}} \psi = \sqrt{\frac{n-r}{(r+1)n}} \Psi&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:3 --&gt;&lt;br /&gt;
Graham's TE error and val normalized TE error both have the advantage that higher rank temperament error corresponds directly to rank one error: if ξ is the error function and T the TE tuning map, then ξ(T) = ξ(M). On the other hand, TE error as defined here and val normalized error both have the advantage that for tunings T, which are rank one and hence where the two are identical, ξ(T) = ||T∧J||/||T|| is sin θ, where θ is the angle between the J (a unit vector in tuning space under the normalization here) and u = T/||T||, the direction vector for T.&lt;/body&gt;&lt;/html&gt;</pre></div>
Graham's TE error and val normalized TE error both have the advantage that higher rank temperament error corresponds directly to rank one error, but Graham normalization has the further advantage that in the rank one case, G = sin θ, where θ is the angle between J and the val in question.&lt;/body&gt;&lt;/html&gt;</pre></div>