Tenney–Euclidean metrics: Difference between revisions
Wikispaces>genewardsmith **Imported revision 196978284 - Original comment: ** |
Wikispaces>genewardsmith **Imported revision 196978688 - Original comment: ** |
||
Line 1: | Line 1: | ||
<h2>IMPORTED REVISION FROM WIKISPACES</h2> | <h2>IMPORTED REVISION FROM WIKISPACES</h2> | ||
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | ||
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2011-01-28 21: | : This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2011-01-28 21:26:57 UTC</tt>.<br> | ||
: The original revision id was <tt> | : The original revision id was <tt>196978688</tt>.<br> | ||
: The revision comment was: <tt></tt><br> | : The revision comment was: <tt></tt><br> | ||
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | ||
Line 29: | Line 29: | ||
==Logflat TE badness== | ==Logflat TE badness== | ||
Given a matrix A whose rows are linearly independent vals defining a regular temperament, then the rank r of the temperament is the number of rows, which equals the number of linearly independent vals. The dimension of the temperament is the number of primes it covers; if p is the largest such prime, then the dimension d is pi(p), the number of primes to p. If we define S(A) to be the simple badness (relative error) of A, and C(A) to be the complexity of A, then //logflat badness// is defined by the formula S(A) C(A)^( | Given a matrix A whose rows are linearly independent vals defining a regular temperament, then the rank r of the temperament is the number of rows, which equals the number of linearly independent vals. The dimension of the temperament is the number of primes it covers; if p is the largest such prime, then the dimension d is pi(p), the number of primes to p. If we define S(A) to be the simple badness (relative error) of A, and C(A) to be the complexity of A, then //logflat badness// is defined by the formula S(A) C(A)^(r/(d-r)). If we set a cutoff margin for logflat badness, there are still infinite numbers of new temperaments appearing as complexity goes up, at a lower rate which is approximately logarithmic in terms of complexity.</pre></div> | ||
<h4>Original HTML content:</h4> | <h4>Original HTML content:</h4> | ||
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html"><html><head><title>Tenney-Euclidean metrics</title></head><body><!-- ws:start:WikiTextHeadingRule:0:&lt;h2&gt; --><h2 id="toc0"><a name="x-The weighting matrix"></a><!-- ws:end:WikiTextHeadingRule:0 -->The weighting matrix</h2> | <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html"><html><head><title>Tenney-Euclidean metrics</title></head><body><!-- ws:start:WikiTextHeadingRule:0:&lt;h2&gt; --><h2 id="toc0"><a name="x-The weighting matrix"></a><!-- ws:end:WikiTextHeadingRule:0 -->The weighting matrix</h2> | ||
Line 54: | Line 54: | ||
<br /> | <br /> | ||
<!-- ws:start:WikiTextHeadingRule:6:&lt;h2&gt; --><h2 id="toc3"><a name="x-Logflat TE badness"></a><!-- ws:end:WikiTextHeadingRule:6 -->Logflat TE badness</h2> | <!-- ws:start:WikiTextHeadingRule:6:&lt;h2&gt; --><h2 id="toc3"><a name="x-Logflat TE badness"></a><!-- ws:end:WikiTextHeadingRule:6 -->Logflat TE badness</h2> | ||
Given a matrix A whose rows are linearly independent vals defining a regular temperament, then the rank r of the temperament is the number of rows, which equals the number of linearly independent vals. The dimension of the temperament is the number of primes it covers; if p is the largest such prime, then the dimension d is pi(p), the number of primes to p. If we define S(A) to be the simple badness (relative error) of A, and C(A) to be the complexity of A, then <em>logflat badness</em> is defined by the formula S(A) C(A)^( | Given a matrix A whose rows are linearly independent vals defining a regular temperament, then the rank r of the temperament is the number of rows, which equals the number of linearly independent vals. The dimension of the temperament is the number of primes it covers; if p is the largest such prime, then the dimension d is pi(p), the number of primes to p. If we define S(A) to be the simple badness (relative error) of A, and C(A) to be the complexity of A, then <em>logflat badness</em> is defined by the formula S(A) C(A)^(r/(d-r)). If we set a cutoff margin for logflat badness, there are still infinite numbers of new temperaments appearing as complexity goes up, at a lower rate which is approximately logarithmic in terms of complexity.</body></html></pre></div> |