Tenney–Euclidean metrics: Difference between revisions

Wikispaces>clumma
**Imported revision 535152958 - Original comment: **
Wikispaces>genewardsmith
**Imported revision 626630809 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:clumma|clumma]] and made on <tt>2014-12-14 22:38:43 UTC</tt>.<br>
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2018-02-19 19:50:40 UTC</tt>.<br>
: The original revision id was <tt>535152958</tt>.<br>
: The original revision id was <tt>626630809</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
Line 12: Line 12:


=Temperamental complexity=  
=Temperamental complexity=  
Suppose now A is a matrix whose rows are vals defining a p-limit regular temperament. Then the corresponding weighted matrix is V = AW. The [[Tenney-Euclidean tuning|TE]] tuning projection matrix is then V`V, where V` is the [[Tenney-Euclidean Tuning|pseudoinverse]]. If the rows of V (or equivalently, A) are linearly independent, then we have V` = V*(VV*)^(-1), where V* denotes the transpose. In terms of vals, the tuning projection matrix is P = V`V = V*(VV*)^(-1)V = WA*(AW^2A*)^(-1)AW. P is a [[http://en.wikipedia.org/wiki/Positive-definite_matrix|positive semidefinite matrix]], so it defines a [[http://en.wikipedia.org/wiki/Definite_bilinear_form|positive semidefinite bilinear form]]. In terms of weighted monzos m1 and m2, m1Pm2* defines the semidefinite form on weighted monzos, and hence b1W^(-1)PW^(-1)b2* defines a semidefinite form on unweighted monzos, in terms of the matrix W^(-1)WA*(AW^2A*)^(-1)AWW^(-1) = A*(AW^2A*)^(-1)A = **P**. From the semidefinite form we obtain an associated [[http://en.wikipedia.org/wiki/Definite_quadratic_form|semidefinite quadratic form]] b**P**b* and from this the [[http://en.wikipedia.org/wiki/Norm_%28mathematics%29|seminorm]] sqrt(b**P**b*).
Suppose now A is a matrix whose rows are vals defining a p-limit regular temperament. Then the corresponding weighted matrix is V = AW. The [[Tenney-Euclidean tuning|TE]] tuning projection matrix is then V`V, where V` is the [[Tenney-Euclidean Tuning|pseudoinverse]]. If the rows of V (or equivalently, A) are linearly independent, then we have V` = V*(VV*)^(-1), where V* denotes the transpose. In terms of vals, the tuning projection matrix is P = V`V = V*(VV*)^(-1)V = WA*(AW^2A*)^(-1)AW. P is a [[http://en.wikipedia.org/wiki/Positive-definite_matrix|positive semidefinite matrix]], so it defines a [[http://en.wikipedia.org/wiki/Definite_bilinear_form|positive semidefinite bilinear form]]. In terms of weighted monzos m1 and m2, m1*Pm2 defines the semidefinite form on weighted monzos, and hence b1*W^(-1)PW^(-1)b2 defines a semidefinite form on unweighted monzos, in terms of the matrix W^(-1)WA*(AW^2A*)^(-1)AWW^(-1) = A*(AW^2A*)^(-1)A = **P**. From the semidefinite form we obtain an associated [[http://en.wikipedia.org/wiki/Definite_quadratic_form|semidefinite quadratic form]] b***P**b and from this the [[http://en.wikipedia.org/wiki/Norm_%28mathematics%29|seminorm]] sqrt(b***P**b).


It may be noted that (VV*)^(-1) = (AW^2A*)^(-1) is the inverse of the [[http://en.wikipedia.org/wiki/Gramian_matrix|Gram matrix]] used to compute [[Tenney-Euclidean temperament measures|TE complexity]], and hence is the corresponding Gram matrix for the dual space. Hence **P** represents a change of basis defined by the mapping given by the vals combined with an [[http://en.wikipedia.org/wiki/Inner_product_space|inner product]] on the result. Given a monzo b, bA* represents the tempered interval corresponding to b in a basis defined by the mapping A, and //P// = (AW^2A*)^(-1) defines a positive-definite quadratic form, and hence a norm, on the tempered interval space with basis defined by A.
It may be noted that (VV*)^(-1) = (AW^2A*)^(-1) is the inverse of the [[http://en.wikipedia.org/wiki/Gramian_matrix|Gram matrix]] used to compute [[Tenney-Euclidean temperament measures|TE complexity]], and hence is the corresponding Gram matrix for the dual space. Hence **P** represents a change of basis defined by the mapping given by the vals combined with an [[http://en.wikipedia.org/wiki/Inner_product_space|inner product]] on the result. Given a monzo b, bA* represents the tempered interval corresponding to b in a basis defined by the mapping A, and //P// = (AW^2A*)^(-1) defines a positive-definite quadratic form, and hence a norm, on the tempered interval space with basis defined by A.
Line 59: Line 59:
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:2:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc1"&gt;&lt;a name="Temperamental complexity"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:2 --&gt;Temperamental complexity&lt;/h1&gt;
&lt;!-- ws:start:WikiTextHeadingRule:2:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc1"&gt;&lt;a name="Temperamental complexity"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:2 --&gt;Temperamental complexity&lt;/h1&gt;
  Suppose now A is a matrix whose rows are vals defining a p-limit regular temperament. Then the corresponding weighted matrix is V = AW. The &lt;a class="wiki_link" href="/Tenney-Euclidean%20tuning"&gt;TE&lt;/a&gt; tuning projection matrix is then V`V, where V` is the &lt;a class="wiki_link" href="/Tenney-Euclidean%20Tuning"&gt;pseudoinverse&lt;/a&gt;. If the rows of V (or equivalently, A) are linearly independent, then we have V` = V*(VV*)^(-1), where V* denotes the transpose. In terms of vals, the tuning projection matrix is P = V`V = V*(VV*)^(-1)V = WA*(AW^2A*)^(-1)AW. P is a &lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Positive-definite_matrix" rel="nofollow"&gt;positive semidefinite matrix&lt;/a&gt;, so it defines a &lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Definite_bilinear_form" rel="nofollow"&gt;positive semidefinite bilinear form&lt;/a&gt;. In terms of weighted monzos m1 and m2, m1Pm2* defines the semidefinite form on weighted monzos, and hence b1W^(-1)PW^(-1)b2* defines a semidefinite form on unweighted monzos, in terms of the matrix W^(-1)WA*(AW^2A*)^(-1)AWW^(-1) = A*(AW^2A*)^(-1)A = &lt;strong&gt;P&lt;/strong&gt;. From the semidefinite form we obtain an associated &lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Definite_quadratic_form" rel="nofollow"&gt;semidefinite quadratic form&lt;/a&gt; b&lt;strong&gt;P&lt;/strong&gt;b* and from this the &lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Norm_%28mathematics%29" rel="nofollow"&gt;seminorm&lt;/a&gt; sqrt(b&lt;strong&gt;P&lt;/strong&gt;b*).&lt;br /&gt;
  Suppose now A is a matrix whose rows are vals defining a p-limit regular temperament. Then the corresponding weighted matrix is V = AW. The &lt;a class="wiki_link" href="/Tenney-Euclidean%20tuning"&gt;TE&lt;/a&gt; tuning projection matrix is then V`V, where V` is the &lt;a class="wiki_link" href="/Tenney-Euclidean%20Tuning"&gt;pseudoinverse&lt;/a&gt;. If the rows of V (or equivalently, A) are linearly independent, then we have V` = V*(VV*)^(-1), where V* denotes the transpose. In terms of vals, the tuning projection matrix is P = V`V = V*(VV*)^(-1)V = WA*(AW^2A*)^(-1)AW. P is a &lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Positive-definite_matrix" rel="nofollow"&gt;positive semidefinite matrix&lt;/a&gt;, so it defines a &lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Definite_bilinear_form" rel="nofollow"&gt;positive semidefinite bilinear form&lt;/a&gt;. In terms of weighted monzos m1 and m2, m1*Pm2 defines the semidefinite form on weighted monzos, and hence b1*W^(-1)PW^(-1)b2 defines a semidefinite form on unweighted monzos, in terms of the matrix W^(-1)WA*(AW^2A*)^(-1)AWW^(-1) = A*(AW^2A*)^(-1)A = &lt;strong&gt;P&lt;/strong&gt;. From the semidefinite form we obtain an associated &lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Definite_quadratic_form" rel="nofollow"&gt;semidefinite quadratic form&lt;/a&gt; b&lt;strong&gt;*P&lt;/strong&gt;b and from this the &lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Norm_%28mathematics%29" rel="nofollow"&gt;seminorm&lt;/a&gt; sqrt(b&lt;strong&gt;*P&lt;/strong&gt;b).&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
It may be noted that (VV*)^(-1) = (AW^2A*)^(-1) is the inverse of the &lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Gramian_matrix" rel="nofollow"&gt;Gram matrix&lt;/a&gt; used to compute &lt;a class="wiki_link" href="/Tenney-Euclidean%20temperament%20measures"&gt;TE complexity&lt;/a&gt;, and hence is the corresponding Gram matrix for the dual space. Hence &lt;strong&gt;P&lt;/strong&gt; represents a change of basis defined by the mapping given by the vals combined with an &lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Inner_product_space" rel="nofollow"&gt;inner product&lt;/a&gt; on the result. Given a monzo b, bA* represents the tempered interval corresponding to b in a basis defined by the mapping A, and &lt;em&gt;P&lt;/em&gt; = (AW^2A*)^(-1) defines a positive-definite quadratic form, and hence a norm, on the tempered interval space with basis defined by A.&lt;br /&gt;
It may be noted that (VV*)^(-1) = (AW^2A*)^(-1) is the inverse of the &lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Gramian_matrix" rel="nofollow"&gt;Gram matrix&lt;/a&gt; used to compute &lt;a class="wiki_link" href="/Tenney-Euclidean%20temperament%20measures"&gt;TE complexity&lt;/a&gt;, and hence is the corresponding Gram matrix for the dual space. Hence &lt;strong&gt;P&lt;/strong&gt; represents a change of basis defined by the mapping given by the vals combined with an &lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Inner_product_space" rel="nofollow"&gt;inner product&lt;/a&gt; on the result. Given a monzo b, bA* represents the tempered interval corresponding to b in a basis defined by the mapping A, and &lt;em&gt;P&lt;/em&gt; = (AW^2A*)^(-1) defines a positive-definite quadratic form, and hence a norm, on the tempered interval space with basis defined by A.&lt;br /&gt;