Tablet: Difference between revisions

Wikispaces>genewardsmith
**Imported revision 254430734 - Original comment: **
Wikispaces>genewardsmith
**Imported revision 254444868 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2011-09-15 13:28:33 UTC</tt>.<br>
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2011-09-15 14:00:42 UTC</tt>.<br>
: The original revision id was <tt>254430734</tt>.<br>
: The original revision id was <tt>254444868</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
Line 31: Line 31:
note(t) = |(u-11)/4 (-a+b+c)/2 (a-b+c)/2 (a+b-c)/2&gt;
note(t) = |(u-11)/4 (-a+b+c)/2 (a-b+c)/2 (a+b-c)/2&gt;


If a+b+c is odd, then define note(t) as -note(-n, [-1-a -1-b -1-c]). Then note(t) is the note defined by the tablet t.
If a+b+c is odd, then define note(t) as -note(-n, [-1-a -1-b -1-c]). Then note(t) is the note defined by the tablet t. If t = [n, w], where w is a 3-tuple, then [note([n, w)), note(n+1, w), note(n+2), w), note(n+3, w)] is a 7-limit tetrad.


=The 7-limit 5et tablet=
=The 7-limit 5et tablet=
If we define u = n - 9a - 5b - 3c then supposing a+b+c is even,
* If u mod 5 = 0, then
note(t) = |u/5 (-a+b+c)/2 (a-b+c)/2 (a+b-c)/2&gt;
* If u mod 5 = 1, then
note(t) = |(u-16)/5 2+(-a+b+c)/2 (a-b+c)/2 (a+b-c)/2&gt;
* If u mod 5 = 2, then
note(t) = |(u-12)/5 (-a+b+c)/2 1+(a-b+c)/2 (a+b-c)/2&gt;
* If u mod 5 = 3, then
note(t) = |(u-8)/5 1+(-a+b+c)/2 (a-b+c)/2 (a+b-c)/2&gt;
* If u mod 5 = 4, then
note(t) = |(u-14)/5 (-a+b+c)/2 (a-b+c)/2 1+(a+b-c)/2&gt;
Once again, if a+b+c is odd, then define note(t) as -note(-n, [-1-a -1-b -1-c]). If t = [n, w], where w is a 3-tuple, then [note([n, w)), note(n+1, w), note(n+2), w), note(n+3, w), note(n+4), w)] is a complete 9-odd-limit quintad.


=The 13-limit 7et tablet=
=The 13-limit 7et tablet=
Line 59: Line 74:
&lt;ul&gt;&lt;li&gt;If u mod 4 = 3, then&lt;/li&gt;&lt;/ul&gt;note(t) = |(u-11)/4 (-a+b+c)/2 (a-b+c)/2 (a+b-c)/2&amp;gt;&lt;br /&gt;
&lt;ul&gt;&lt;li&gt;If u mod 4 = 3, then&lt;/li&gt;&lt;/ul&gt;note(t) = |(u-11)/4 (-a+b+c)/2 (a-b+c)/2 (a+b-c)/2&amp;gt;&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
If a+b+c is odd, then define note(t) as -note(-n, [-1-a -1-b -1-c]). Then note(t) is the note defined by the tablet t.&lt;br /&gt;
If a+b+c is odd, then define note(t) as -note(-n, [-1-a -1-b -1-c]). Then note(t) is the note defined by the tablet t. If t = [n, w], where w is a 3-tuple, then [note([n, w)), note(n+1, w), note(n+2), w), note(n+3, w)] is a 7-limit tetrad.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:8:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc4"&gt;&lt;a name="The 7-limit 5et tablet"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:8 --&gt;The 7-limit 5et tablet&lt;/h1&gt;
&lt;!-- ws:start:WikiTextHeadingRule:8:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc4"&gt;&lt;a name="The 7-limit 5et tablet"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:8 --&gt;The 7-limit 5et tablet&lt;/h1&gt;
&lt;br /&gt;
If we define u = n - 9a - 5b - 3c then supposing a+b+c is even,&lt;br /&gt;
&lt;br /&gt;
&lt;ul&gt;&lt;li&gt;If u mod 5 = 0, then&lt;/li&gt;&lt;/ul&gt;note(t) = |u/5 (-a+b+c)/2 (a-b+c)/2 (a+b-c)/2&amp;gt;&lt;br /&gt;
&lt;ul&gt;&lt;li&gt;If u mod 5 = 1, then&lt;/li&gt;&lt;/ul&gt;note(t) = |(u-16)/5 2+(-a+b+c)/2 (a-b+c)/2 (a+b-c)/2&amp;gt;&lt;br /&gt;
&lt;ul&gt;&lt;li&gt;If u mod 5 = 2, then&lt;/li&gt;&lt;/ul&gt;note(t) = |(u-12)/5 (-a+b+c)/2 1+(a-b+c)/2 (a+b-c)/2&amp;gt;&lt;br /&gt;
&lt;ul&gt;&lt;li&gt;If u mod 5 = 3, then&lt;/li&gt;&lt;/ul&gt;note(t) = |(u-8)/5 1+(-a+b+c)/2 (a-b+c)/2 (a+b-c)/2&amp;gt;&lt;br /&gt;
&lt;ul&gt;&lt;li&gt;If u mod 5 = 4, then&lt;/li&gt;&lt;/ul&gt;note(t) = |(u-14)/5 (-a+b+c)/2 (a-b+c)/2 1+(a+b-c)/2&amp;gt;&lt;br /&gt;
&lt;br /&gt;
Once again, if a+b+c is odd, then define note(t) as -note(-n, [-1-a -1-b -1-c]). If t = [n, w], where w is a 3-tuple, then [note([n, w)), note(n+1, w), note(n+2), w), note(n+3, w), note(n+4), w)] is a complete 9-odd-limit quintad.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:10:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc5"&gt;&lt;a name="The 13-limit 7et tablet"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:10 --&gt;The 13-limit 7et tablet&lt;/h1&gt;
&lt;!-- ws:start:WikiTextHeadingRule:10:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc5"&gt;&lt;a name="The 13-limit 7et tablet"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:10 --&gt;The 13-limit 7et tablet&lt;/h1&gt;
&lt;/body&gt;&lt;/html&gt;</pre></div>
&lt;/body&gt;&lt;/html&gt;</pre></div>