Tablet: Difference between revisions

Wikispaces>genewardsmith
**Imported revision 255453394 - Original comment: **
Wikispaces>genewardsmith
**Imported revision 256942162 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2011-09-18 23:09:00 UTC</tt>.<br>
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2011-09-22 07:22:52 UTC</tt>.<br>
: The original revision id was <tt>255453394</tt>.<br>
: The original revision id was <tt>256942162</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
Line 143: Line 143:


=The tutone tutonic tablet=
=The tutone tutonic tablet=
This tablet is based on the [[tutonic sextad]], which in terms of the  99/98 (Huygens) version of 11-limit meantone consists of a chain of five tones, followed by an augmented second; in other words a {81/80, 126/125, 99/98}-tempered version of 9/9-9/8-9/8-9/8-9/8-8/7, which in terms of notes rather than steps is a tempered 1-9/8-5/4-7/5-11/7-7/4. Using this chord as the basis for harmony puts one in [[Chromatic pairs#Tutone|tutone temperament]], a 2.9.7.11 subgroup temperament, and the sextad can be called Tutone[6], the tutone haplotonic scale.


 
If the tablet is the ordered pair [n, c] and if u = n-19c, then if i = u mod 6, define note(n, c) = |(u-i)/6-3i 2c+2i&gt;. This gives a 3-limit interval which tempers to a note of tutone satisfying the identity &lt;12 19|note(n, c)&gt; = 2n. We can also express this in terms of a subgroup monzo as &lt;6 19|note(n, c)| = n, where note(n, c) in subgroup monzo terms is |(u-i)/6-3i c+i&gt;.</pre></div>
</pre></div>
<h4>Original HTML content:</h4>
<h4>Original HTML content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;Tablets&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;!-- ws:start:WikiTextTocRule:14:&amp;lt;img id=&amp;quot;wikitext@@toc@@flat&amp;quot; class=&amp;quot;WikiMedia WikiMediaTocFlat&amp;quot; title=&amp;quot;Table of Contents&amp;quot; src=&amp;quot;/site/embedthumbnail/toc/flat?w=100&amp;amp;h=16&amp;quot;/&amp;gt; --&gt;&lt;!-- ws:end:WikiTextTocRule:14 --&gt;&lt;!-- ws:start:WikiTextTocRule:15: --&gt;&lt;a href="#What is a tablet?"&gt;What is a tablet?&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:15 --&gt;&lt;!-- ws:start:WikiTextTocRule:16: --&gt; | &lt;a href="#The 5-limit 3et tablet"&gt;The 5-limit 3et tablet&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:16 --&gt;&lt;!-- ws:start:WikiTextTocRule:17: --&gt; | &lt;a href="#The 7-limit 4et tablet"&gt;The 7-limit 4et tablet&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:17 --&gt;&lt;!-- ws:start:WikiTextTocRule:18: --&gt; | &lt;a href="#The 7-limit 5et tablet"&gt;The 7-limit 5et tablet&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:18 --&gt;&lt;!-- ws:start:WikiTextTocRule:19: --&gt; | &lt;a href="#The 13-limit 7et tablet"&gt;The 13-limit 7et tablet&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:19 --&gt;&lt;!-- ws:start:WikiTextTocRule:20: --&gt; | &lt;a href="#The meantone add6/9 tablet"&gt;The meantone add6/9 tablet&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:20 --&gt;&lt;!-- ws:start:WikiTextTocRule:21: --&gt; | &lt;a href="#The tutone tutonic tablet"&gt;The tutone tutonic tablet&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:21 --&gt;&lt;!-- ws:start:WikiTextTocRule:22: --&gt;
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;Tablets&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;!-- ws:start:WikiTextTocRule:16:&amp;lt;img id=&amp;quot;wikitext@@toc@@flat&amp;quot; class=&amp;quot;WikiMedia WikiMediaTocFlat&amp;quot; title=&amp;quot;Table of Contents&amp;quot; src=&amp;quot;/site/embedthumbnail/toc/flat?w=100&amp;amp;h=16&amp;quot;/&amp;gt; --&gt;&lt;!-- ws:end:WikiTextTocRule:16 --&gt;&lt;!-- ws:start:WikiTextTocRule:17: --&gt;&lt;a href="#What is a tablet?"&gt;What is a tablet?&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:17 --&gt;&lt;!-- ws:start:WikiTextTocRule:18: --&gt; | &lt;a href="#The 5-limit 3et tablet"&gt;The 5-limit 3et tablet&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:18 --&gt;&lt;!-- ws:start:WikiTextTocRule:19: --&gt; | &lt;a href="#The 7-limit 4et tablet"&gt;The 7-limit 4et tablet&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:19 --&gt;&lt;!-- ws:start:WikiTextTocRule:20: --&gt; | &lt;a href="#The 7-limit 5et tablet"&gt;The 7-limit 5et tablet&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:20 --&gt;&lt;!-- ws:start:WikiTextTocRule:21: --&gt; | &lt;a href="#The 13-limit 7et tablet"&gt;The 13-limit 7et tablet&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:21 --&gt;&lt;!-- ws:start:WikiTextTocRule:22: --&gt; | &lt;a href="#The meantone add6/9 tablet"&gt;The meantone add6/9 tablet&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:22 --&gt;&lt;!-- ws:start:WikiTextTocRule:23: --&gt; | &lt;a href="#The tutone tutonic tablet"&gt;The tutone tutonic tablet&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:23 --&gt;&lt;!-- ws:start:WikiTextTocRule:24: --&gt; | &lt;a href="#x2n. We can also express this in terms of a subgroup monzo as"&gt; 2n. We can also express this in terms of a subgroup monzo as &amp;lt;6 19|note(n, c)| &lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:24 --&gt;&lt;!-- ws:start:WikiTextTocRule:25: --&gt;
&lt;!-- ws:end:WikiTextTocRule:22 --&gt;&lt;br /&gt;
&lt;!-- ws:end:WikiTextTocRule:25 --&gt;&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc0"&gt;&lt;a name="What is a tablet?"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt;What is a tablet?&lt;/h1&gt;
&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc0"&gt;&lt;a name="What is a tablet?"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt;What is a tablet?&lt;/h1&gt;
By a &lt;em&gt;tablet&lt;/em&gt; (the name by analogy with tablature) is meant a pair [n, c] consisting of an approximate note-number n (an integer) and a chord denoting element c, typically a &lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Tuple" rel="nofollow"&gt;tuple&lt;/a&gt; of integers, which defines a type of chord up to octave equivalence. Together they define a note in a just intonation group or regular temperament. The representation of the note is non-unique, as for any note there will be a variety of tablets for it depending on the specified type of chord and chord element, but by means of a val or val-like mapping, the number n in the tablet is definable from the note.&lt;br /&gt;
By a &lt;em&gt;tablet&lt;/em&gt; (the name by analogy with tablature) is meant a pair [n, c] consisting of an approximate note-number n (an integer) and a chord denoting element c, typically a &lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Tuple" rel="nofollow"&gt;tuple&lt;/a&gt; of integers, which defines a type of chord up to octave equivalence. Together they define a note in a just intonation group or regular temperament. The representation of the note is non-unique, as for any note there will be a variety of tablets for it depending on the specified type of chord and chord element, but by means of a val or val-like mapping, the number n in the tablet is definable from the note.&lt;br /&gt;
Line 250: Line 250:
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:12:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc6"&gt;&lt;a name="The tutone tutonic tablet"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:12 --&gt;The tutone tutonic tablet&lt;/h1&gt;
&lt;!-- ws:start:WikiTextHeadingRule:12:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc6"&gt;&lt;a name="The tutone tutonic tablet"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:12 --&gt;The tutone tutonic tablet&lt;/h1&gt;
&lt;/body&gt;&lt;/html&gt;</pre></div>
This tablet is based on the &lt;a class="wiki_link" href="/tutonic%20sextad"&gt;tutonic sextad&lt;/a&gt;, which in terms of the  99/98 (Huygens) version of 11-limit meantone consists of a chain of five tones, followed by an augmented second; in other words a {81/80, 126/125, 99/98}-tempered version of 9/9-9/8-9/8-9/8-9/8-8/7, which in terms of notes rather than steps is a tempered 1-9/8-5/4-7/5-11/7-7/4. Using this chord as the basis for harmony puts one in &lt;a class="wiki_link" href="/Chromatic%20pairs#Tutone"&gt;tutone temperament&lt;/a&gt;, a 2.9.7.11 subgroup temperament, and the sextad can be called Tutone[6], the tutone haplotonic scale.&lt;br /&gt;
&lt;br /&gt;
If the tablet is the ordered pair [n, c] and if u = n-19c, then if i = u mod 6, define note(n, c) = |(u-i)/6-3i 2c+2i&amp;gt;. This gives a 3-limit interval which tempers to a note of tutone satisfying the identity &amp;lt;12 19|note(n, c)&amp;gt;  &lt;!-- ws:start:WikiTextHeadingRule:14:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc7"&gt;&lt;a name="x2n. We can also express this in terms of a subgroup monzo as"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:14 --&gt; 2n. We can also express this in terms of a subgroup monzo as &amp;lt;6 19|note(n, c)| &lt;/h1&gt;
n, where note(n, c) in subgroup monzo terms is |(u-i)/6-3i c+i&amp;gt;.&lt;/body&gt;&lt;/html&gt;</pre></div>