Tablet: Difference between revisions

Wikispaces>genewardsmith
**Imported revision 258067534 - Original comment: **
Wikispaces>genewardsmith
**Imported revision 258483110 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2011-09-25 20:35:34 UTC</tt>.<br>
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2011-09-26 21:15:15 UTC</tt>.<br>
: The original revision id was <tt>258067534</tt>.<br>
: The original revision id was <tt>258483110</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
Line 149: Line 149:


If the tablet is the ordered pair [n, c] and if u = n-19c, then if i = u mod 6, define note(n, c) = |(u-i)/6-3i 2c+2i&gt;. This gives a 3-limit interval which tempers to a note of tutone satisfying the identity &lt;12 19|note(n, c) = 2n. We can also express this in terms of a subgroup monzo as &lt;6 19|note(n, c) = n, where note(n, c) in subgroup monzo terms is |(u-i)/6-3i c+i&gt;.
If the tablet is the ordered pair [n, c] and if u = n-19c, then if i = u mod 6, define note(n, c) = |(u-i)/6-3i 2c+2i&gt;. This gives a 3-limit interval which tempers to a note of tutone satisfying the identity &lt;12 19|note(n, c) = 2n. We can also express this in terms of a subgroup monzo as &lt;6 19|note(n, c) = n, where note(n, c) in subgroup monzo terms is |(u-i)/6-3i c+i&gt;.
=The orwell nonad tablet=
The [[orwell tetrad|orwell nonad]] is the Orwell[9] MOS, considered as an essentially tempered dyadic chord (which it is, in the 15-limit.) While nine notes is a lot of notes for a chord, obviously in practice subchords could be used.
If the tablet is the ordered pair [n, c] and if u = n-11c, then setting i = u mod 9, define aa transversal for note(n, c) by determining if i is even or odd, and setting
note(n, c) = |(u-i)/9-i/2 -i/2-c 0 i/2+c&gt;
if i is even, and
note(n, c) = |(u-i)/9-(i+9)/2 (1-i)/2-c 1 (i+1)/2+c&gt;
if i is odd. We then have &lt;9 14 21 25|note(n, c) = n.


=The keenanismic tablet=
=The keenanismic tablet=
Line 180: Line 189:
</pre></div>
</pre></div>
<h4>Original HTML content:</h4>
<h4>Original HTML content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;Tablets&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;!-- ws:start:WikiTextTocRule:16:&amp;lt;img id=&amp;quot;wikitext@@toc@@flat&amp;quot; class=&amp;quot;WikiMedia WikiMediaTocFlat&amp;quot; title=&amp;quot;Table of Contents&amp;quot; src=&amp;quot;/site/embedthumbnail/toc/flat?w=100&amp;amp;h=16&amp;quot;/&amp;gt; --&gt;&lt;!-- ws:end:WikiTextTocRule:16 --&gt;&lt;!-- ws:start:WikiTextTocRule:17: --&gt;&lt;a href="#What is a tablet?"&gt;What is a tablet?&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:17 --&gt;&lt;!-- ws:start:WikiTextTocRule:18: --&gt; | &lt;a href="#The 5-limit 3et tablet"&gt;The 5-limit 3et tablet&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:18 --&gt;&lt;!-- ws:start:WikiTextTocRule:19: --&gt; | &lt;a href="#The 7-limit 4et tablet"&gt;The 7-limit 4et tablet&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:19 --&gt;&lt;!-- ws:start:WikiTextTocRule:20: --&gt; | &lt;a href="#The 7-limit 5et tablet"&gt;The 7-limit 5et tablet&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:20 --&gt;&lt;!-- ws:start:WikiTextTocRule:21: --&gt; | &lt;a href="#The 13-limit 7et tablet"&gt;The 13-limit 7et tablet&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:21 --&gt;&lt;!-- ws:start:WikiTextTocRule:22: --&gt; | &lt;a href="#The meantone add6/9 tablet"&gt;The meantone add6/9 tablet&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:22 --&gt;&lt;!-- ws:start:WikiTextTocRule:23: --&gt; | &lt;a href="#The tutone tutonic tablet"&gt;The tutone tutonic tablet&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:23 --&gt;&lt;!-- ws:start:WikiTextTocRule:24: --&gt; | &lt;a href="#The keenanismic tablet"&gt;The keenanismic tablet&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:24 --&gt;&lt;!-- ws:start:WikiTextTocRule:25: --&gt;
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;Tablets&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;!-- ws:start:WikiTextTocRule:18:&amp;lt;img id=&amp;quot;wikitext@@toc@@flat&amp;quot; class=&amp;quot;WikiMedia WikiMediaTocFlat&amp;quot; title=&amp;quot;Table of Contents&amp;quot; src=&amp;quot;/site/embedthumbnail/toc/flat?w=100&amp;amp;h=16&amp;quot;/&amp;gt; --&gt;&lt;!-- ws:end:WikiTextTocRule:18 --&gt;&lt;!-- ws:start:WikiTextTocRule:19: --&gt;&lt;a href="#What is a tablet?"&gt;What is a tablet?&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:19 --&gt;&lt;!-- ws:start:WikiTextTocRule:20: --&gt; | &lt;a href="#The 5-limit 3et tablet"&gt;The 5-limit 3et tablet&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:20 --&gt;&lt;!-- ws:start:WikiTextTocRule:21: --&gt; | &lt;a href="#The 7-limit 4et tablet"&gt;The 7-limit 4et tablet&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:21 --&gt;&lt;!-- ws:start:WikiTextTocRule:22: --&gt; | &lt;a href="#The 7-limit 5et tablet"&gt;The 7-limit 5et tablet&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:22 --&gt;&lt;!-- ws:start:WikiTextTocRule:23: --&gt; | &lt;a href="#The 13-limit 7et tablet"&gt;The 13-limit 7et tablet&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:23 --&gt;&lt;!-- ws:start:WikiTextTocRule:24: --&gt; | &lt;a href="#The meantone add6/9 tablet"&gt;The meantone add6/9 tablet&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:24 --&gt;&lt;!-- ws:start:WikiTextTocRule:25: --&gt; | &lt;a href="#The tutone tutonic tablet"&gt;The tutone tutonic tablet&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:25 --&gt;&lt;!-- ws:start:WikiTextTocRule:26: --&gt; | &lt;a href="#The orwell nonad tablet"&gt;The orwell nonad tablet&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:26 --&gt;&lt;!-- ws:start:WikiTextTocRule:27: --&gt; | &lt;a href="#The keenanismic tablet"&gt;The keenanismic tablet&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:27 --&gt;&lt;!-- ws:start:WikiTextTocRule:28: --&gt;
&lt;!-- ws:end:WikiTextTocRule:25 --&gt;&lt;br /&gt;
&lt;!-- ws:end:WikiTextTocRule:28 --&gt;&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc0"&gt;&lt;a name="What is a tablet?"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt;What is a tablet?&lt;/h1&gt;
&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc0"&gt;&lt;a name="What is a tablet?"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt;What is a tablet?&lt;/h1&gt;
By a &lt;em&gt;tablet&lt;/em&gt; (the name by analogy with tablature) is meant a pair [n, c] consisting of an approximate note-number n (an integer) and a chord denoting element c, typically a &lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Tuple" rel="nofollow"&gt;tuple&lt;/a&gt; of integers, which defines a type of chord up to octave equivalence. Together they define a note in a just intonation group or regular temperament. The representation of the note is non-unique, as for any note there will be a variety of tablets for it depending on the specified type of chord and chord element, but by means of a val or val-like mapping, the number n in the tablet is definable from the note.&lt;br /&gt;
By a &lt;em&gt;tablet&lt;/em&gt; (the name by analogy with tablature) is meant a pair [n, c] consisting of an approximate note-number n (an integer) and a chord denoting element c, typically a &lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Tuple" rel="nofollow"&gt;tuple&lt;/a&gt; of integers, which defines a type of chord up to octave equivalence. Together they define a note in a just intonation group or regular temperament. The representation of the note is non-unique, as for any note there will be a variety of tablets for it depending on the specified type of chord and chord element, but by means of a val or val-like mapping, the number n in the tablet is definable from the note.&lt;br /&gt;
Line 290: Line 299:
If the tablet is the ordered pair [n, c] and if u = n-19c, then if i = u mod 6, define note(n, c) = |(u-i)/6-3i 2c+2i&amp;gt;. This gives a 3-limit interval which tempers to a note of tutone satisfying the identity &amp;lt;12 19|note(n, c) = 2n. We can also express this in terms of a subgroup monzo as &amp;lt;6 19|note(n, c) = n, where note(n, c) in subgroup monzo terms is |(u-i)/6-3i c+i&amp;gt;.&lt;br /&gt;
If the tablet is the ordered pair [n, c] and if u = n-19c, then if i = u mod 6, define note(n, c) = |(u-i)/6-3i 2c+2i&amp;gt;. This gives a 3-limit interval which tempers to a note of tutone satisfying the identity &amp;lt;12 19|note(n, c) = 2n. We can also express this in terms of a subgroup monzo as &amp;lt;6 19|note(n, c) = n, where note(n, c) in subgroup monzo terms is |(u-i)/6-3i c+i&amp;gt;.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:14:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc7"&gt;&lt;a name="The keenanismic tablet"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:14 --&gt;The keenanismic tablet&lt;/h1&gt;
&lt;!-- ws:start:WikiTextHeadingRule:14:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc7"&gt;&lt;a name="The orwell nonad tablet"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:14 --&gt;The orwell nonad tablet&lt;/h1&gt;
The &lt;a class="wiki_link" href="/orwell%20tetrad"&gt;orwell nonad&lt;/a&gt; is the Orwell[9] MOS, considered as an essentially tempered dyadic chord (which it is, in the 15-limit.) While nine notes is a lot of notes for a chord, obviously in practice subchords could be used. &lt;br /&gt;
&lt;br /&gt;
If the tablet is the ordered pair [n, c] and if u = n-11c, then setting i = u mod 9, define aa transversal for note(n, c) by determining if i is even or odd, and setting &lt;br /&gt;
note(n, c) = |(u-i)/9-i/2 -i/2-c 0 i/2+c&amp;gt; &lt;br /&gt;
if i is even, and &lt;br /&gt;
note(n, c) = |(u-i)/9-(i+9)/2 (1-i)/2-c 1 (i+1)/2+c&amp;gt;&lt;br /&gt;
if i is odd. We then have &amp;lt;9 14 21 25|note(n, c) = n.&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:16:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc8"&gt;&lt;a name="The keenanismic tablet"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:16 --&gt;The keenanismic tablet&lt;/h1&gt;
This is based on the five &lt;a class="wiki_link" href="/keenanismic%20tetrads"&gt;keenanismic tetrads&lt;/a&gt;, which are essentially tempered chords tempering out 385/384, plus the otonal and utonal tetrads. If we take the intervals for an otonal tetrad in close position, 5/4-6/5-7/6-8/7, we can permute them in 24 ways. The number of circular permutations, leading to chords which are not simply transpositions, is six. Keenanismic tempering makes all six chords &lt;a class="wiki_link" href="/Dyadic%20chord"&gt;dyadic&lt;/a&gt;. in addition the steps 8/7-5/4-8/7-14/11 lead to a keenanismic tempered 35/32-5/4-3/2-12/7 chord.&lt;br /&gt;
This is based on the five &lt;a class="wiki_link" href="/keenanismic%20tetrads"&gt;keenanismic tetrads&lt;/a&gt;, which are essentially tempered chords tempering out 385/384, plus the otonal and utonal tetrads. If we take the intervals for an otonal tetrad in close position, 5/4-6/5-7/6-8/7, we can permute them in 24 ways. The number of circular permutations, leading to chords which are not simply transpositions, is six. Keenanismic tempering makes all six chords &lt;a class="wiki_link" href="/Dyadic%20chord"&gt;dyadic&lt;/a&gt;. in addition the steps 8/7-5/4-8/7-14/11 lead to a keenanismic tempered 35/32-5/4-3/2-12/7 chord.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;