Tablet: Difference between revisions
Wikispaces>genewardsmith **Imported revision 263015274 - Original comment: ** |
Wikispaces>genewardsmith **Imported revision 264267457 - Original comment: ** |
||
Line 1: | Line 1: | ||
<h2>IMPORTED REVISION FROM WIKISPACES</h2> | <h2>IMPORTED REVISION FROM WIKISPACES</h2> | ||
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | ||
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2011-10- | : This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2011-10-13 00:57:13 UTC</tt>.<br> | ||
: The original revision id was <tt> | : The original revision id was <tt>264267457</tt>.<br> | ||
: The revision comment was: <tt></tt><br> | : The revision comment was: <tt></tt><br> | ||
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | ||
Line 77: | Line 77: | ||
If a and b are two allowable triples of integers representing tetrads (so that their reduction modulo four is one of the seven allowed types) then we may derive a [[http://mathworld.wolfram.com/PositiveDefiniteQuadraticForm.html|positive definite quaratic form]] on 3-tuples [x y z] by Q(x, y, z) = 4x^2 + 3y^2 + 3z^2 + 4xy + 4xz + 2xy, such that Q(a-b) = 8 if a and b are 3-tuples representing tetrads with a common triad. The square root sqrt(Q(a-b)) is a Eulidean measure of distance, and sqrt(8) is the minimum distance between tetrad 3-tuples. Such 3-tuple pairs a minimum distance apart share at least an interval in common, and usually a triad, and are therefore closely related. | If a and b are two allowable triples of integers representing tetrads (so that their reduction modulo four is one of the seven allowed types) then we may derive a [[http://mathworld.wolfram.com/PositiveDefiniteQuadraticForm.html|positive definite quaratic form]] on 3-tuples [x y z] by Q(x, y, z) = 4x^2 + 3y^2 + 3z^2 + 4xy + 4xz + 2xy, such that Q(a-b) = 8 if a and b are 3-tuples representing tetrads with a common triad. The square root sqrt(Q(a-b)) is a Eulidean measure of distance, and sqrt(8) is the minimum distance between tetrad 3-tuples. Such 3-tuple pairs a minimum distance apart share at least an interval in common, and usually a triad, and are therefore closely related. | ||
==The Pele tablet== | |||
This is a tablet for the rank 3 13-limit temperament [[Hemifamity family#Pele|pele]]. It is based on the following 71 chords, in the 5-limit transversal: | |||
chords = [ | |||
[1, 6/5, 3/2, 9/5], | |||
[1, 5/4, 3/2, 1280/729], | |||
[1, 6/5, 3/2, 2187/1280], | |||
[1, 6561/5120, 3/2, 9/5], | |||
[1, 2560/2187, 3/2, 5/3], | |||
[1, 2560/2187, 3/2, 1280/729], | |||
[1, 5/4, 3/2, 327680/177147], | |||
[1, 6/5, 3/2, 531441/327680], | |||
[1, 6561/5120, 3/2, 531441/327680], | |||
[1, 2560/2187, 3/2, 327680/177147], | |||
[1, 9/8, 81920/59049, 1280/729], | |||
[1, 81/64, 10240/6561, 1280/729], | |||
[1, 5/4, 81920/59049, 1280/729], | |||
[1, 5/4, 729/512, 59049/32768], | |||
[1, 65536/59049, 1024/729, 9/5], | |||
[1, 4782969/4194304, 177147/131072, 5/3], | |||
[1, 655360/531441, 20971520/14348907, 5/3], | |||
[1, 9/8, 81920/59049, 2621440/1594323], | |||
[1, 32/27, 20971520/14348907, 2621440/1594323], | |||
[1, 4782969/4194304, 3/2, 5/3], | |||
[1, 2097152/1594323, 3/2, 9/5], | |||
[1, 10/9, 5/4, 1594323/1048576], | |||
[1, 5/4, 81920/59049, 2621440/1594323], | |||
[1, 32/27, 2097152/1594323, 2621440/1594323], | |||
[1, 6561/5120, 531441/327680, 9/5], | |||
[1, 9/8, 5/4, 2621440/1594323], | |||
[1, 5/4, 729/512, 1280/729], | |||
[1, 9/8, 729/512, 128/81], | |||
[1, 655360/531441, 81920/59049, 1280/729]] | |||
=5et tablets= | =5et tablets= | ||
Line 223: | Line 259: | ||
</pre></div> | </pre></div> | ||
<h4>Original HTML content:</h4> | <h4>Original HTML content:</h4> | ||
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html"><html><head><title>Tablets</title></head><body><!-- ws:start:WikiTextTocRule: | <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html"><html><head><title>Tablets</title></head><body><!-- ws:start:WikiTextTocRule:26:&lt;img id=&quot;wikitext@@toc@@normal&quot; class=&quot;WikiMedia WikiMediaToc&quot; title=&quot;Table of Contents&quot; src=&quot;/site/embedthumbnail/toc/normal?w=225&amp;h=100&quot;/&gt; --><div id="toc"><h1 class="nopad">Table of Contents</h1><!-- ws:end:WikiTextTocRule:26 --><!-- ws:start:WikiTextTocRule:27: --><div style="margin-left: 1em;"><a href="#What is a tablet?">What is a tablet?</a></div> | ||
<!-- ws:end:WikiTextTocRule: | <!-- ws:end:WikiTextTocRule:27 --><!-- ws:start:WikiTextTocRule:28: --><div style="margin-left: 1em;"><a href="#The 5-limit 3et tablet">The 5-limit 3et tablet</a></div> | ||
<!-- ws:end:WikiTextTocRule: | <!-- ws:end:WikiTextTocRule:28 --><!-- ws:start:WikiTextTocRule:29: --><div style="margin-left: 1em;"><a href="#x4et tablets">4et tablets</a></div> | ||
<!-- ws:end:WikiTextTocRule: | <!-- ws:end:WikiTextTocRule:29 --><!-- ws:start:WikiTextTocRule:30: --><div style="margin-left: 2em;"><a href="#x4et tablets-The 7-limit 4et tablet">The 7-limit 4et tablet</a></div> | ||
<!-- ws:end:WikiTextTocRule: | <!-- ws:end:WikiTextTocRule:30 --><!-- ws:start:WikiTextTocRule:31: --><div style="margin-left: 2em;"><a href="#x4et tablets-The keenanismic tablet">The keenanismic tablet</a></div> | ||
<!-- ws:end:WikiTextTocRule: | <!-- ws:end:WikiTextTocRule:31 --><!-- ws:start:WikiTextTocRule:32: --><div style="margin-left: 2em;"><a href="#x4et tablets-The Pele tablet">The Pele tablet</a></div> | ||
<!-- ws:end:WikiTextTocRule: | <!-- ws:end:WikiTextTocRule:32 --><!-- ws:start:WikiTextTocRule:33: --><div style="margin-left: 1em;"><a href="#x5et tablets">5et tablets</a></div> | ||
<!-- ws:end:WikiTextTocRule: | <!-- ws:end:WikiTextTocRule:33 --><!-- ws:start:WikiTextTocRule:34: --><div style="margin-left: 2em;"><a href="#x5et tablets-The 7-limit 5et tablet">The 7-limit 5et tablet</a></div> | ||
<!-- ws:end:WikiTextTocRule: | <!-- ws:end:WikiTextTocRule:34 --><!-- ws:start:WikiTextTocRule:35: --><div style="margin-left: 2em;"><a href="#x5et tablets-The meantone add6/9 tablet">The meantone add6/9 tablet</a></div> | ||
<!-- ws:end:WikiTextTocRule: | <!-- ws:end:WikiTextTocRule:35 --><!-- ws:start:WikiTextTocRule:36: --><div style="margin-left: 2em;"><a href="#x5et tablets-The 5et portent tablet">The 5et portent tablet</a></div> | ||
<!-- ws:end:WikiTextTocRule: | <!-- ws:end:WikiTextTocRule:36 --><!-- ws:start:WikiTextTocRule:37: --><div style="margin-left: 1em;"><a href="#The 6et tutone tutonic tablet">The 6et tutone tutonic tablet</a></div> | ||
<!-- ws:end:WikiTextTocRule: | <!-- ws:end:WikiTextTocRule:37 --><!-- ws:start:WikiTextTocRule:38: --><div style="margin-left: 1em;"><a href="#The 13-limit 7et tablet">The 13-limit 7et tablet</a></div> | ||
<!-- ws:end:WikiTextTocRule: | <!-- ws:end:WikiTextTocRule:38 --><!-- ws:start:WikiTextTocRule:39: --><div style="margin-left: 1em;"><a href="#The orwell nonad tablet">The orwell nonad tablet</a></div> | ||
<!-- ws:end:WikiTextTocRule: | <!-- ws:end:WikiTextTocRule:39 --><!-- ws:start:WikiTextTocRule:40: --></div> | ||
<!-- ws:end:WikiTextTocRule:40 --><br /> | |||
<!-- ws:start:WikiTextHeadingRule:0:&lt;h1&gt; --><h1 id="toc0"><a name="What is a tablet?"></a><!-- ws:end:WikiTextHeadingRule:0 -->What is a tablet?</h1> | <!-- ws:start:WikiTextHeadingRule:0:&lt;h1&gt; --><h1 id="toc0"><a name="What is a tablet?"></a><!-- ws:end:WikiTextHeadingRule:0 -->What is a tablet?</h1> | ||
By a <em>tablet</em> (the name by analogy with tablature) is meant a pair [n, c] consisting of an approximate note-number n (an integer) and a chord denoting element c, typically a <a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Tuple" rel="nofollow">tuple</a> of integers, which defines a type of chord up to octave equivalence. Together they define a note in a just intonation group or regular temperament. The representation of the note is non-unique, as for any note there will be a variety of tablets for it depending on the specified type of chord and chord element, but by means of a val or val-like mapping, the number n in the tablet is definable from the note. For a discussion of how tablets can be used as a compositional tool, see <a class="wiki_link" href="/Composing%20with%20tablets">Composing with tablets</a>.<br /> | By a <em>tablet</em> (the name by analogy with tablature) is meant a pair [n, c] consisting of an approximate note-number n (an integer) and a chord denoting element c, typically a <a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Tuple" rel="nofollow">tuple</a> of integers, which defines a type of chord up to octave equivalence. Together they define a note in a just intonation group or regular temperament. The representation of the note is non-unique, as for any note there will be a variety of tablets for it depending on the specified type of chord and chord element, but by means of a val or val-like mapping, the number n in the tablet is definable from the note. For a discussion of how tablets can be used as a compositional tool, see <a class="wiki_link" href="/Composing%20with%20tablets">Composing with tablets</a>.<br /> | ||
Line 297: | Line 334: | ||
If a and b are two allowable triples of integers representing tetrads (so that their reduction modulo four is one of the seven allowed types) then we may derive a <a class="wiki_link_ext" href="http://mathworld.wolfram.com/PositiveDefiniteQuadraticForm.html" rel="nofollow">positive definite quaratic form</a> on 3-tuples [x y z] by Q(x, y, z) = 4x^2 + 3y^2 + 3z^2 + 4xy + 4xz + 2xy, such that Q(a-b) = 8 if a and b are 3-tuples representing tetrads with a common triad. The square root sqrt(Q(a-b)) is a Eulidean measure of distance, and sqrt(8) is the minimum distance between tetrad 3-tuples. Such 3-tuple pairs a minimum distance apart share at least an interval in common, and usually a triad, and are therefore closely related.<br /> | If a and b are two allowable triples of integers representing tetrads (so that their reduction modulo four is one of the seven allowed types) then we may derive a <a class="wiki_link_ext" href="http://mathworld.wolfram.com/PositiveDefiniteQuadraticForm.html" rel="nofollow">positive definite quaratic form</a> on 3-tuples [x y z] by Q(x, y, z) = 4x^2 + 3y^2 + 3z^2 + 4xy + 4xz + 2xy, such that Q(a-b) = 8 if a and b are 3-tuples representing tetrads with a common triad. The square root sqrt(Q(a-b)) is a Eulidean measure of distance, and sqrt(8) is the minimum distance between tetrad 3-tuples. Such 3-tuple pairs a minimum distance apart share at least an interval in common, and usually a triad, and are therefore closely related.<br /> | ||
<br /> | <br /> | ||
<!-- ws:start:WikiTextHeadingRule:10:&lt;h1&gt; --><h1 id=" | <!-- ws:start:WikiTextHeadingRule:10:&lt;h2&gt; --><h2 id="toc5"><a name="x4et tablets-The Pele tablet"></a><!-- ws:end:WikiTextHeadingRule:10 -->The Pele tablet</h2> | ||
<!-- ws:start:WikiTextHeadingRule: | This is a tablet for the rank 3 13-limit temperament <a class="wiki_link" href="/Hemifamity%20family#Pele">pele</a>. It is based on the following 71 chords, in the 5-limit transversal: <br /> | ||
<br /> | |||
chords = [ <br /> | |||
[1, 6/5, 3/2, 9/5],<br /> | |||
[1, 5/4, 3/2, 1280/729],<br /> | |||
[1, 6/5, 3/2, 2187/1280],<br /> | |||
[1, 6561/5120, 3/2, 9/5],<br /> | |||
[1, 2560/2187, 3/2, 5/3],<br /> | |||
[1, 2560/2187, 3/2, 1280/729],<br /> | |||
[1, 5/4, 3/2, 327680/177147],<br /> | |||
[1, 6/5, 3/2, 531441/327680],<br /> | |||
[1, 6561/5120, 3/2, 531441/327680],<br /> | |||
[1, 2560/2187, 3/2, 327680/177147],<br /> | |||
[1, 9/8, 81920/59049, 1280/729],<br /> | |||
[1, 81/64, 10240/6561, 1280/729],<br /> | |||
[1, 5/4, 81920/59049, 1280/729],<br /> | |||
[1, 5/4, 729/512, 59049/32768],<br /> | |||
[1, 65536/59049, 1024/729, 9/5],<br /> | |||
[1, 4782969/4194304, 177147/131072, 5/3],<br /> | |||
[1, 655360/531441, 20971520/14348907, 5/3],<br /> | |||
[1, 9/8, 81920/59049, 2621440/1594323],<br /> | |||
[1, 32/27, 20971520/14348907, 2621440/1594323],<br /> | |||
[1, 4782969/4194304, 3/2, 5/3],<br /> | |||
[1, 2097152/1594323, 3/2, 9/5],<br /> | |||
[1, 10/9, 5/4, 1594323/1048576],<br /> | |||
[1, 5/4, 81920/59049, 2621440/1594323],<br /> | |||
[1, 32/27, 2097152/1594323, 2621440/1594323],<br /> | |||
[1, 6561/5120, 531441/327680, 9/5],<br /> | |||
[1, 9/8, 5/4, 2621440/1594323],<br /> | |||
[1, 5/4, 729/512, 1280/729],<br /> | |||
[1, 9/8, 729/512, 128/81],<br /> | |||
[1, 655360/531441, 81920/59049, 1280/729]]<br /> | |||
<br /> | |||
<br /> | |||
<br /> | |||
<!-- ws:start:WikiTextHeadingRule:12:&lt;h1&gt; --><h1 id="toc6"><a name="x5et tablets"></a><!-- ws:end:WikiTextHeadingRule:12 -->5et tablets</h1> | |||
<!-- ws:start:WikiTextHeadingRule:14:&lt;h2&gt; --><h2 id="toc7"><a name="x5et tablets-The 7-limit 5et tablet"></a><!-- ws:end:WikiTextHeadingRule:14 -->The 7-limit 5et tablet</h2> | |||
<br /> | <br /> | ||
If we define u = n - 9a - 5b - 3c then supposing a+b+c is even,<br /> | If we define u = n - 9a - 5b - 3c then supposing a+b+c is even,<br /> | ||
Line 310: | Line 383: | ||
Once again, if a+b+c is odd, then define note(t) as -note(-n, [-1-a -1-b -1-c]). If t = [n, w], where w is a 3-tuple, then [note([n, w)), note(n+1, w), note(n+2), w), note(n+3, w), note(n+4), w)] is a complete 9-odd-limit quintad, where &lt;5 8 12 14|note(n, t) = n.<br /> | Once again, if a+b+c is odd, then define note(t) as -note(-n, [-1-a -1-b -1-c]). If t = [n, w], where w is a 3-tuple, then [note([n, w)), note(n+1, w), note(n+2), w), note(n+3, w), note(n+4), w)] is a complete 9-odd-limit quintad, where &lt;5 8 12 14|note(n, t) = n.<br /> | ||
<br /> | <br /> | ||
<!-- ws:start:WikiTextHeadingRule: | <!-- ws:start:WikiTextHeadingRule:16:&lt;h2&gt; --><h2 id="toc8"><a name="x5et tablets-The meantone add6/9 tablet"></a><!-- ws:end:WikiTextHeadingRule:16 -->The meantone add6/9 tablet</h2> | ||
The meantone add6/9 tablet is based on the <a class="wiki_link" href="/meantone%20add6-9%20quintad">meantone add6/9 quintad</a>, which can also be called the add2/9 quintad, the meantone pentatonic scale or Meantone[5]. The tablet is extremly simple, consiting of an ordered pair [n, c], where we have a meantone transversal for the notes defined by u = n-8c, where <br /> | The meantone add6/9 tablet is based on the <a class="wiki_link" href="/meantone%20add6-9%20quintad">meantone add6/9 quintad</a>, which can also be called the add2/9 quintad, the meantone pentatonic scale or Meantone[5]. The tablet is extremly simple, consiting of an ordered pair [n, c], where we have a meantone transversal for the notes defined by u = n-8c, where <br /> | ||
<br /> | <br /> | ||
Line 325: | Line 398: | ||
In all cases &lt;5 8|note(n, c) = n. Tempering the the Pythgorean transversal by flattening 3 gives, as usual, a meantone tuning.<br /> | In all cases &lt;5 8|note(n, c) = n. Tempering the the Pythgorean transversal by flattening 3 gives, as usual, a meantone tuning.<br /> | ||
<br /> | <br /> | ||
<!-- ws:start:WikiTextHeadingRule: | <!-- ws:start:WikiTextHeadingRule:18:&lt;h2&gt; --><h2 id="toc9"><a name="x5et tablets-The 5et portent tablet"></a><!-- ws:end:WikiTextHeadingRule:18 -->The 5et portent tablet</h2> | ||
This is based on the following twelve chords, which are expressed in terms of the 2.5.7 transversal of the 11-limit rank three temperament portent, which tempers out 385/384, 441/440 and hence also 1029/1024 and 3025/3024. <br /> | This is based on the following twelve chords, which are expressed in terms of the 2.5.7 transversal of the 11-limit rank three temperament portent, which tempers out 385/384, 441/440 and hence also 1029/1024 and 3025/3024. <br /> | ||
<br /> | <br /> | ||
Line 350: | Line 423: | ||
Each of the other eleven chords shares a triad with the first, otonal, pentad, and all of the chords can be related by an infinite but locally finite graph by drawing an edge between chords with a common triad.<br /> | Each of the other eleven chords shares a triad with the first, otonal, pentad, and all of the chords can be related by an infinite but locally finite graph by drawing an edge between chords with a common triad.<br /> | ||
<br /> | <br /> | ||
<!-- ws:start:WikiTextHeadingRule: | <!-- ws:start:WikiTextHeadingRule:20:&lt;h1&gt; --><h1 id="toc10"><a name="The 6et tutone tutonic tablet"></a><!-- ws:end:WikiTextHeadingRule:20 -->The 6et tutone tutonic tablet</h1> | ||
This tablet is based on the <a class="wiki_link" href="/tutonic%20sextad">tutonic sextad</a>, which in terms of the 99/98 (Huygens) version of 11-limit meantone consists of a chain of five tones, followed by an augmented second; in other words a {81/80, 126/125, 99/98}-tempered version of 9/8-9/8-9/8-9/8-9/8-8/7, which in terms of notes rather than steps is a tempered 1-9/8-5/4-7/5-11/7-7/4. Using this chord as the basis for harmony puts one in <a class="wiki_link" href="/Chromatic%20pairs#Tutone">tutone temperament</a>, a 2.9.7.11 subgroup temperament, and the sextad can be called Tutone[6], the tutone haplotonic scale.<br /> | This tablet is based on the <a class="wiki_link" href="/tutonic%20sextad">tutonic sextad</a>, which in terms of the 99/98 (Huygens) version of 11-limit meantone consists of a chain of five tones, followed by an augmented second; in other words a {81/80, 126/125, 99/98}-tempered version of 9/8-9/8-9/8-9/8-9/8-8/7, which in terms of notes rather than steps is a tempered 1-9/8-5/4-7/5-11/7-7/4. Using this chord as the basis for harmony puts one in <a class="wiki_link" href="/Chromatic%20pairs#Tutone">tutone temperament</a>, a 2.9.7.11 subgroup temperament, and the sextad can be called Tutone[6], the tutone haplotonic scale.<br /> | ||
<br /> | <br /> | ||
If the tablet is the ordered pair [n, c] and if u = n-19c, then if i = u mod 6, define note(n, c) = |(u-i)/6-3i 2c+2i&gt;. This gives a 3-limit interval which tempers to a note of tutone satisfying the identity &lt;12 19|note(n, c) = 2n. We can also express this in terms of a subgroup monzo as &lt;6 19|note(n, c) = n, where note(n, c) in subgroup monzo terms is |(u-i)/6-3i c+i&gt;.<br /> | If the tablet is the ordered pair [n, c] and if u = n-19c, then if i = u mod 6, define note(n, c) = |(u-i)/6-3i 2c+2i&gt;. This gives a 3-limit interval which tempers to a note of tutone satisfying the identity &lt;12 19|note(n, c) = 2n. We can also express this in terms of a subgroup monzo as &lt;6 19|note(n, c) = n, where note(n, c) in subgroup monzo terms is |(u-i)/6-3i c+i&gt;.<br /> | ||
<br /> | <br /> | ||
<!-- ws:start:WikiTextHeadingRule: | <!-- ws:start:WikiTextHeadingRule:22:&lt;h1&gt; --><h1 id="toc11"><a name="The 13-limit 7et tablet"></a><!-- ws:end:WikiTextHeadingRule:22 -->The 13-limit 7et tablet</h1> | ||
Let &lt;r e3 e5 e7 e11 e13| denote an otonal 13-limit septad with root given by |* e3 e5 e7 e11 e13&gt; when r is even, which in close position is 9/8-5/4-11/8-3/2-13/8-7/4-2. If r is odd, let it denote a utonal pentad which in close position is 12/11-6/5-4/3-3/2-12/7-24/13-2<br /> | Let &lt;r e3 e5 e7 e11 e13| denote an otonal 13-limit septad with root given by |* e3 e5 e7 e11 e13&gt; when r is even, which in close position is 9/8-5/4-11/8-3/2-13/8-7/4-2. If r is odd, let it denote a utonal pentad which in close position is 12/11-6/5-4/3-3/2-12/7-24/13-2<br /> | ||
<br /> | <br /> | ||
Line 393: | Line 466: | ||
&lt;7 11 16 20 24 26|note(n, [r e3 e5 e7 e11 e13]) = n.<br /> | &lt;7 11 16 20 24 26|note(n, [r e3 e5 e7 e11 e13]) = n.<br /> | ||
<br /> | <br /> | ||
<!-- ws:start:WikiTextHeadingRule: | <!-- ws:start:WikiTextHeadingRule:24:&lt;h1&gt; --><h1 id="toc12"><a name="The orwell nonad tablet"></a><!-- ws:end:WikiTextHeadingRule:24 -->The orwell nonad tablet</h1> | ||
The <a class="wiki_link" href="/orwell%20tetrad">orwell nonad</a> is the Orwell[9] MOS, considered as an essentially tempered dyadic chord (which it is, in the 15-limit.) While nine notes is a lot of notes for a chord, obviously in practice subchords could be used. <br /> | The <a class="wiki_link" href="/orwell%20tetrad">orwell nonad</a> is the Orwell[9] MOS, considered as an essentially tempered dyadic chord (which it is, in the 15-limit.) While nine notes is a lot of notes for a chord, obviously in practice subchords could be used. <br /> | ||
<br /> | <br /> |