Tablet: Difference between revisions

Wikispaces>genewardsmith
**Imported revision 263015274 - Original comment: **
Wikispaces>genewardsmith
**Imported revision 264267457 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2011-10-09 15:43:06 UTC</tt>.<br>
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2011-10-13 00:57:13 UTC</tt>.<br>
: The original revision id was <tt>263015274</tt>.<br>
: The original revision id was <tt>264267457</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
Line 77: Line 77:


If a and b are two allowable triples of integers representing tetrads (so that their reduction modulo four is one of the seven allowed types) then we may derive a [[http://mathworld.wolfram.com/PositiveDefiniteQuadraticForm.html|positive definite quaratic form]] on 3-tuples [x y z] by Q(x, y, z) = 4x^2 + 3y^2 + 3z^2 + 4xy + 4xz + 2xy, such that Q(a-b) = 8 if a and b are 3-tuples representing tetrads with a common triad. The square root sqrt(Q(a-b)) is a Eulidean measure of distance, and sqrt(8) is the minimum distance between tetrad 3-tuples. Such 3-tuple pairs a minimum distance apart share at least an interval in common, and usually a triad, and are therefore closely related.
If a and b are two allowable triples of integers representing tetrads (so that their reduction modulo four is one of the seven allowed types) then we may derive a [[http://mathworld.wolfram.com/PositiveDefiniteQuadraticForm.html|positive definite quaratic form]] on 3-tuples [x y z] by Q(x, y, z) = 4x^2 + 3y^2 + 3z^2 + 4xy + 4xz + 2xy, such that Q(a-b) = 8 if a and b are 3-tuples representing tetrads with a common triad. The square root sqrt(Q(a-b)) is a Eulidean measure of distance, and sqrt(8) is the minimum distance between tetrad 3-tuples. Such 3-tuple pairs a minimum distance apart share at least an interval in common, and usually a triad, and are therefore closely related.
==The Pele tablet==
This is a tablet for the rank 3 13-limit temperament [[Hemifamity family#Pele|pele]]. It is based on the following 71 chords, in the 5-limit transversal:
chords = [
[1, 6/5, 3/2, 9/5],
[1, 5/4, 3/2, 1280/729],
[1, 6/5, 3/2, 2187/1280],
[1, 6561/5120, 3/2, 9/5],
[1, 2560/2187, 3/2, 5/3],
[1, 2560/2187, 3/2, 1280/729],
[1, 5/4, 3/2, 327680/177147],
[1, 6/5, 3/2, 531441/327680],
[1, 6561/5120, 3/2, 531441/327680],
[1, 2560/2187, 3/2, 327680/177147],
[1, 9/8, 81920/59049, 1280/729],
[1, 81/64, 10240/6561, 1280/729],
[1, 5/4, 81920/59049, 1280/729],
[1, 5/4, 729/512, 59049/32768],
[1, 65536/59049, 1024/729, 9/5],
[1, 4782969/4194304, 177147/131072, 5/3],
[1, 655360/531441, 20971520/14348907, 5/3],
[1, 9/8, 81920/59049, 2621440/1594323],
[1, 32/27, 20971520/14348907, 2621440/1594323],
[1, 4782969/4194304, 3/2, 5/3],
[1, 2097152/1594323, 3/2, 9/5],
[1, 10/9, 5/4, 1594323/1048576],
[1, 5/4, 81920/59049, 2621440/1594323],
[1, 32/27, 2097152/1594323, 2621440/1594323],
[1, 6561/5120, 531441/327680, 9/5],
[1, 9/8, 5/4, 2621440/1594323],
[1, 5/4, 729/512, 1280/729],
[1, 9/8, 729/512, 128/81],
[1, 655360/531441, 81920/59049, 1280/729]]


=5et tablets=
=5et tablets=
Line 223: Line 259:
</pre></div>
</pre></div>
<h4>Original HTML content:</h4>
<h4>Original HTML content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;Tablets&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;!-- ws:start:WikiTextTocRule:24:&amp;lt;img id=&amp;quot;wikitext@@toc@@normal&amp;quot; class=&amp;quot;WikiMedia WikiMediaToc&amp;quot; title=&amp;quot;Table of Contents&amp;quot; src=&amp;quot;/site/embedthumbnail/toc/normal?w=225&amp;amp;h=100&amp;quot;/&amp;gt; --&gt;&lt;div id="toc"&gt;&lt;h1 class="nopad"&gt;Table of Contents&lt;/h1&gt;&lt;!-- ws:end:WikiTextTocRule:24 --&gt;&lt;!-- ws:start:WikiTextTocRule:25: --&gt;&lt;div style="margin-left: 1em;"&gt;&lt;a href="#What is a tablet?"&gt;What is a tablet?&lt;/a&gt;&lt;/div&gt;
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;Tablets&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;!-- ws:start:WikiTextTocRule:26:&amp;lt;img id=&amp;quot;wikitext@@toc@@normal&amp;quot; class=&amp;quot;WikiMedia WikiMediaToc&amp;quot; title=&amp;quot;Table of Contents&amp;quot; src=&amp;quot;/site/embedthumbnail/toc/normal?w=225&amp;amp;h=100&amp;quot;/&amp;gt; --&gt;&lt;div id="toc"&gt;&lt;h1 class="nopad"&gt;Table of Contents&lt;/h1&gt;&lt;!-- ws:end:WikiTextTocRule:26 --&gt;&lt;!-- ws:start:WikiTextTocRule:27: --&gt;&lt;div style="margin-left: 1em;"&gt;&lt;a href="#What is a tablet?"&gt;What is a tablet?&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:25 --&gt;&lt;!-- ws:start:WikiTextTocRule:26: --&gt;&lt;div style="margin-left: 1em;"&gt;&lt;a href="#The 5-limit 3et tablet"&gt;The 5-limit 3et tablet&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:27 --&gt;&lt;!-- ws:start:WikiTextTocRule:28: --&gt;&lt;div style="margin-left: 1em;"&gt;&lt;a href="#The 5-limit 3et tablet"&gt;The 5-limit 3et tablet&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:26 --&gt;&lt;!-- ws:start:WikiTextTocRule:27: --&gt;&lt;div style="margin-left: 1em;"&gt;&lt;a href="#x4et tablets"&gt;4et tablets&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:28 --&gt;&lt;!-- ws:start:WikiTextTocRule:29: --&gt;&lt;div style="margin-left: 1em;"&gt;&lt;a href="#x4et tablets"&gt;4et tablets&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:27 --&gt;&lt;!-- ws:start:WikiTextTocRule:28: --&gt;&lt;div style="margin-left: 2em;"&gt;&lt;a href="#x4et tablets-The 7-limit 4et tablet"&gt;The 7-limit 4et tablet&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:29 --&gt;&lt;!-- ws:start:WikiTextTocRule:30: --&gt;&lt;div style="margin-left: 2em;"&gt;&lt;a href="#x4et tablets-The 7-limit 4et tablet"&gt;The 7-limit 4et tablet&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:28 --&gt;&lt;!-- ws:start:WikiTextTocRule:29: --&gt;&lt;div style="margin-left: 2em;"&gt;&lt;a href="#x4et tablets-The keenanismic tablet"&gt;The keenanismic tablet&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:30 --&gt;&lt;!-- ws:start:WikiTextTocRule:31: --&gt;&lt;div style="margin-left: 2em;"&gt;&lt;a href="#x4et tablets-The keenanismic tablet"&gt;The keenanismic tablet&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:29 --&gt;&lt;!-- ws:start:WikiTextTocRule:30: --&gt;&lt;div style="margin-left: 1em;"&gt;&lt;a href="#x5et tablets"&gt;5et tablets&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:31 --&gt;&lt;!-- ws:start:WikiTextTocRule:32: --&gt;&lt;div style="margin-left: 2em;"&gt;&lt;a href="#x4et tablets-The Pele tablet"&gt;The Pele tablet&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:30 --&gt;&lt;!-- ws:start:WikiTextTocRule:31: --&gt;&lt;div style="margin-left: 2em;"&gt;&lt;a href="#x5et tablets-The 7-limit 5et tablet"&gt;The 7-limit 5et tablet&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:32 --&gt;&lt;!-- ws:start:WikiTextTocRule:33: --&gt;&lt;div style="margin-left: 1em;"&gt;&lt;a href="#x5et tablets"&gt;5et tablets&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:31 --&gt;&lt;!-- ws:start:WikiTextTocRule:32: --&gt;&lt;div style="margin-left: 2em;"&gt;&lt;a href="#x5et tablets-The meantone add6/9 tablet"&gt;The meantone add6/9 tablet&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:33 --&gt;&lt;!-- ws:start:WikiTextTocRule:34: --&gt;&lt;div style="margin-left: 2em;"&gt;&lt;a href="#x5et tablets-The 7-limit 5et tablet"&gt;The 7-limit 5et tablet&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:32 --&gt;&lt;!-- ws:start:WikiTextTocRule:33: --&gt;&lt;div style="margin-left: 2em;"&gt;&lt;a href="#x5et tablets-The 5et portent tablet"&gt;The 5et portent tablet&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:34 --&gt;&lt;!-- ws:start:WikiTextTocRule:35: --&gt;&lt;div style="margin-left: 2em;"&gt;&lt;a href="#x5et tablets-The meantone add6/9 tablet"&gt;The meantone add6/9 tablet&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:33 --&gt;&lt;!-- ws:start:WikiTextTocRule:34: --&gt;&lt;div style="margin-left: 1em;"&gt;&lt;a href="#The 6et tutone tutonic tablet"&gt;The 6et tutone tutonic tablet&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:35 --&gt;&lt;!-- ws:start:WikiTextTocRule:36: --&gt;&lt;div style="margin-left: 2em;"&gt;&lt;a href="#x5et tablets-The 5et portent tablet"&gt;The 5et portent tablet&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:34 --&gt;&lt;!-- ws:start:WikiTextTocRule:35: --&gt;&lt;div style="margin-left: 1em;"&gt;&lt;a href="#The 13-limit 7et tablet"&gt;The 13-limit 7et tablet&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:36 --&gt;&lt;!-- ws:start:WikiTextTocRule:37: --&gt;&lt;div style="margin-left: 1em;"&gt;&lt;a href="#The 6et tutone tutonic tablet"&gt;The 6et tutone tutonic tablet&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:35 --&gt;&lt;!-- ws:start:WikiTextTocRule:36: --&gt;&lt;div style="margin-left: 1em;"&gt;&lt;a href="#The orwell nonad tablet"&gt;The orwell nonad tablet&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:37 --&gt;&lt;!-- ws:start:WikiTextTocRule:38: --&gt;&lt;div style="margin-left: 1em;"&gt;&lt;a href="#The 13-limit 7et tablet"&gt;The 13-limit 7et tablet&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:36 --&gt;&lt;!-- ws:start:WikiTextTocRule:37: --&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:38 --&gt;&lt;!-- ws:start:WikiTextTocRule:39: --&gt;&lt;div style="margin-left: 1em;"&gt;&lt;a href="#The orwell nonad tablet"&gt;The orwell nonad tablet&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:37 --&gt;&lt;br /&gt;
&lt;!-- ws:end:WikiTextTocRule:39 --&gt;&lt;!-- ws:start:WikiTextTocRule:40: --&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:40 --&gt;&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc0"&gt;&lt;a name="What is a tablet?"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt;What is a tablet?&lt;/h1&gt;
&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc0"&gt;&lt;a name="What is a tablet?"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt;What is a tablet?&lt;/h1&gt;
By a &lt;em&gt;tablet&lt;/em&gt; (the name by analogy with tablature) is meant a pair [n, c] consisting of an approximate note-number n (an integer) and a chord denoting element c, typically a &lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Tuple" rel="nofollow"&gt;tuple&lt;/a&gt; of integers, which defines a type of chord up to octave equivalence. Together they define a note in a just intonation group or regular temperament. The representation of the note is non-unique, as for any note there will be a variety of tablets for it depending on the specified type of chord and chord element, but by means of a val or val-like mapping, the number n in the tablet is definable from the note. For a discussion of how tablets can be used as a compositional tool, see &lt;a class="wiki_link" href="/Composing%20with%20tablets"&gt;Composing with tablets&lt;/a&gt;.&lt;br /&gt;
By a &lt;em&gt;tablet&lt;/em&gt; (the name by analogy with tablature) is meant a pair [n, c] consisting of an approximate note-number n (an integer) and a chord denoting element c, typically a &lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Tuple" rel="nofollow"&gt;tuple&lt;/a&gt; of integers, which defines a type of chord up to octave equivalence. Together they define a note in a just intonation group or regular temperament. The representation of the note is non-unique, as for any note there will be a variety of tablets for it depending on the specified type of chord and chord element, but by means of a val or val-like mapping, the number n in the tablet is definable from the note. For a discussion of how tablets can be used as a compositional tool, see &lt;a class="wiki_link" href="/Composing%20with%20tablets"&gt;Composing with tablets&lt;/a&gt;.&lt;br /&gt;
Line 297: Line 334:
If a and b are two allowable triples of integers representing tetrads (so that their reduction modulo four is one of the seven allowed types) then we may derive a &lt;a class="wiki_link_ext" href="http://mathworld.wolfram.com/PositiveDefiniteQuadraticForm.html" rel="nofollow"&gt;positive definite quaratic form&lt;/a&gt; on 3-tuples [x y z] by Q(x, y, z) = 4x^2 + 3y^2 + 3z^2 + 4xy + 4xz + 2xy, such that Q(a-b) = 8 if a and b are 3-tuples representing tetrads with a common triad. The square root sqrt(Q(a-b)) is a Eulidean measure of distance, and sqrt(8) is the minimum distance between tetrad 3-tuples. Such 3-tuple pairs a minimum distance apart share at least an interval in common, and usually a triad, and are therefore closely related.&lt;br /&gt;
If a and b are two allowable triples of integers representing tetrads (so that their reduction modulo four is one of the seven allowed types) then we may derive a &lt;a class="wiki_link_ext" href="http://mathworld.wolfram.com/PositiveDefiniteQuadraticForm.html" rel="nofollow"&gt;positive definite quaratic form&lt;/a&gt; on 3-tuples [x y z] by Q(x, y, z) = 4x^2 + 3y^2 + 3z^2 + 4xy + 4xz + 2xy, such that Q(a-b) = 8 if a and b are 3-tuples representing tetrads with a common triad. The square root sqrt(Q(a-b)) is a Eulidean measure of distance, and sqrt(8) is the minimum distance between tetrad 3-tuples. Such 3-tuple pairs a minimum distance apart share at least an interval in common, and usually a triad, and are therefore closely related.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:10:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc5"&gt;&lt;a name="x5et tablets"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:10 --&gt;5et tablets&lt;/h1&gt;
&lt;!-- ws:start:WikiTextHeadingRule:10:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc5"&gt;&lt;a name="x4et tablets-The Pele tablet"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:10 --&gt;The Pele tablet&lt;/h2&gt;
&lt;!-- ws:start:WikiTextHeadingRule:12:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc6"&gt;&lt;a name="x5et tablets-The 7-limit 5et tablet"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:12 --&gt;The 7-limit 5et tablet&lt;/h2&gt;
This is a tablet for the rank 3 13-limit temperament &lt;a class="wiki_link" href="/Hemifamity%20family#Pele"&gt;pele&lt;/a&gt;. It is based on the following 71 chords, in the 5-limit transversal: &lt;br /&gt;
&lt;br /&gt;
chords = [ &lt;br /&gt;
[1, 6/5, 3/2, 9/5],&lt;br /&gt;
[1, 5/4, 3/2, 1280/729],&lt;br /&gt;
[1, 6/5, 3/2, 2187/1280],&lt;br /&gt;
[1, 6561/5120, 3/2, 9/5],&lt;br /&gt;
[1, 2560/2187, 3/2, 5/3],&lt;br /&gt;
[1, 2560/2187, 3/2, 1280/729],&lt;br /&gt;
[1, 5/4, 3/2, 327680/177147],&lt;br /&gt;
[1, 6/5, 3/2, 531441/327680],&lt;br /&gt;
[1, 6561/5120, 3/2, 531441/327680],&lt;br /&gt;
[1, 2560/2187, 3/2, 327680/177147],&lt;br /&gt;
[1, 9/8, 81920/59049, 1280/729],&lt;br /&gt;
[1, 81/64, 10240/6561, 1280/729],&lt;br /&gt;
[1, 5/4, 81920/59049, 1280/729],&lt;br /&gt;
[1, 5/4, 729/512, 59049/32768],&lt;br /&gt;
[1, 65536/59049, 1024/729, 9/5],&lt;br /&gt;
[1, 4782969/4194304, 177147/131072, 5/3],&lt;br /&gt;
[1, 655360/531441, 20971520/14348907, 5/3],&lt;br /&gt;
[1, 9/8, 81920/59049, 2621440/1594323],&lt;br /&gt;
[1, 32/27, 20971520/14348907, 2621440/1594323],&lt;br /&gt;
[1, 4782969/4194304, 3/2, 5/3],&lt;br /&gt;
[1, 2097152/1594323, 3/2, 9/5],&lt;br /&gt;
[1, 10/9, 5/4, 1594323/1048576],&lt;br /&gt;
[1, 5/4, 81920/59049, 2621440/1594323],&lt;br /&gt;
[1, 32/27, 2097152/1594323, 2621440/1594323],&lt;br /&gt;
[1, 6561/5120, 531441/327680, 9/5],&lt;br /&gt;
[1, 9/8, 5/4, 2621440/1594323],&lt;br /&gt;
[1, 5/4, 729/512, 1280/729],&lt;br /&gt;
[1, 9/8, 729/512, 128/81],&lt;br /&gt;
[1, 655360/531441, 81920/59049, 1280/729]]&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:12:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc6"&gt;&lt;a name="x5et tablets"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:12 --&gt;5et tablets&lt;/h1&gt;
&lt;!-- ws:start:WikiTextHeadingRule:14:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc7"&gt;&lt;a name="x5et tablets-The 7-limit 5et tablet"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:14 --&gt;The 7-limit 5et tablet&lt;/h2&gt;
&lt;br /&gt;
&lt;br /&gt;
If we define u = n - 9a - 5b - 3c then supposing a+b+c is even,&lt;br /&gt;
If we define u = n - 9a - 5b - 3c then supposing a+b+c is even,&lt;br /&gt;
Line 310: Line 383:
Once again, if a+b+c is odd, then define note(t) as -note(-n, [-1-a -1-b -1-c]). If t = [n, w], where w is a 3-tuple, then [note([n, w)), note(n+1, w), note(n+2), w), note(n+3, w), note(n+4), w)] is a complete 9-odd-limit quintad, where &amp;lt;5 8 12 14|note(n, t) = n.&lt;br /&gt;
Once again, if a+b+c is odd, then define note(t) as -note(-n, [-1-a -1-b -1-c]). If t = [n, w], where w is a 3-tuple, then [note([n, w)), note(n+1, w), note(n+2), w), note(n+3, w), note(n+4), w)] is a complete 9-odd-limit quintad, where &amp;lt;5 8 12 14|note(n, t) = n.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:14:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc7"&gt;&lt;a name="x5et tablets-The meantone add6/9 tablet"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:14 --&gt;The meantone add6/9 tablet&lt;/h2&gt;
&lt;!-- ws:start:WikiTextHeadingRule:16:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc8"&gt;&lt;a name="x5et tablets-The meantone add6/9 tablet"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:16 --&gt;The meantone add6/9 tablet&lt;/h2&gt;
The meantone add6/9 tablet is based on the &lt;a class="wiki_link" href="/meantone%20add6-9%20quintad"&gt;meantone add6/9 quintad&lt;/a&gt;, which can also be called the add2/9 quintad, the meantone pentatonic scale or Meantone[5]. The tablet is extremly simple, consiting of an ordered pair [n, c], where we have a meantone transversal for the notes defined by u = n-8c, where &lt;br /&gt;
The meantone add6/9 tablet is based on the &lt;a class="wiki_link" href="/meantone%20add6-9%20quintad"&gt;meantone add6/9 quintad&lt;/a&gt;, which can also be called the add2/9 quintad, the meantone pentatonic scale or Meantone[5]. The tablet is extremly simple, consiting of an ordered pair [n, c], where we have a meantone transversal for the notes defined by u = n-8c, where &lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
Line 325: Line 398:
In all cases &amp;lt;5 8|note(n, c) = n. Tempering the the Pythgorean transversal by flattening 3 gives, as usual, a meantone tuning.&lt;br /&gt;
In all cases &amp;lt;5 8|note(n, c) = n. Tempering the the Pythgorean transversal by flattening 3 gives, as usual, a meantone tuning.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:16:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc8"&gt;&lt;a name="x5et tablets-The 5et portent tablet"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:16 --&gt;The 5et portent tablet&lt;/h2&gt;
&lt;!-- ws:start:WikiTextHeadingRule:18:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc9"&gt;&lt;a name="x5et tablets-The 5et portent tablet"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:18 --&gt;The 5et portent tablet&lt;/h2&gt;
This is based on the following twelve chords, which are expressed in terms of the 2.5.7 transversal of the 11-limit rank three temperament portent, which tempers out 385/384, 441/440 and hence also 1029/1024 and 3025/3024. &lt;br /&gt;
This is based on the following twelve chords, which are expressed in terms of the 2.5.7 transversal of the 11-limit rank three temperament portent, which tempers out 385/384, 441/440 and hence also 1029/1024 and 3025/3024. &lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
Line 350: Line 423:
Each of the other eleven chords shares a triad with the first, otonal, pentad, and all of the chords can be related by an infinite but locally finite graph by drawing an edge between chords with a common triad.&lt;br /&gt;
Each of the other eleven chords shares a triad with the first, otonal, pentad, and all of the chords can be related by an infinite but locally finite graph by drawing an edge between chords with a common triad.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:18:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc9"&gt;&lt;a name="The 6et tutone tutonic tablet"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:18 --&gt;The 6et tutone tutonic tablet&lt;/h1&gt;
&lt;!-- ws:start:WikiTextHeadingRule:20:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc10"&gt;&lt;a name="The 6et tutone tutonic tablet"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:20 --&gt;The 6et tutone tutonic tablet&lt;/h1&gt;
This tablet is based on the &lt;a class="wiki_link" href="/tutonic%20sextad"&gt;tutonic sextad&lt;/a&gt;, which in terms of the  99/98 (Huygens) version of 11-limit meantone consists of a chain of five tones, followed by an augmented second; in other words a {81/80, 126/125, 99/98}-tempered version of 9/8-9/8-9/8-9/8-9/8-8/7, which in terms of notes rather than steps is a tempered 1-9/8-5/4-7/5-11/7-7/4. Using this chord as the basis for harmony puts one in &lt;a class="wiki_link" href="/Chromatic%20pairs#Tutone"&gt;tutone temperament&lt;/a&gt;, a 2.9.7.11 subgroup temperament, and the sextad can be called Tutone[6], the tutone haplotonic scale.&lt;br /&gt;
This tablet is based on the &lt;a class="wiki_link" href="/tutonic%20sextad"&gt;tutonic sextad&lt;/a&gt;, which in terms of the  99/98 (Huygens) version of 11-limit meantone consists of a chain of five tones, followed by an augmented second; in other words a {81/80, 126/125, 99/98}-tempered version of 9/8-9/8-9/8-9/8-9/8-8/7, which in terms of notes rather than steps is a tempered 1-9/8-5/4-7/5-11/7-7/4. Using this chord as the basis for harmony puts one in &lt;a class="wiki_link" href="/Chromatic%20pairs#Tutone"&gt;tutone temperament&lt;/a&gt;, a 2.9.7.11 subgroup temperament, and the sextad can be called Tutone[6], the tutone haplotonic scale.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
If the tablet is the ordered pair [n, c] and if u = n-19c, then if i = u mod 6, define note(n, c) = |(u-i)/6-3i 2c+2i&amp;gt;. This gives a 3-limit interval which tempers to a note of tutone satisfying the identity &amp;lt;12 19|note(n, c) = 2n. We can also express this in terms of a subgroup monzo as &amp;lt;6 19|note(n, c) = n, where note(n, c) in subgroup monzo terms is |(u-i)/6-3i c+i&amp;gt;.&lt;br /&gt;
If the tablet is the ordered pair [n, c] and if u = n-19c, then if i = u mod 6, define note(n, c) = |(u-i)/6-3i 2c+2i&amp;gt;. This gives a 3-limit interval which tempers to a note of tutone satisfying the identity &amp;lt;12 19|note(n, c) = 2n. We can also express this in terms of a subgroup monzo as &amp;lt;6 19|note(n, c) = n, where note(n, c) in subgroup monzo terms is |(u-i)/6-3i c+i&amp;gt;.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:20:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc10"&gt;&lt;a name="The 13-limit 7et tablet"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:20 --&gt;The 13-limit 7et tablet&lt;/h1&gt;
&lt;!-- ws:start:WikiTextHeadingRule:22:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc11"&gt;&lt;a name="The 13-limit 7et tablet"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:22 --&gt;The 13-limit 7et tablet&lt;/h1&gt;
Let &amp;lt;r e3 e5 e7 e11 e13| denote an otonal 13-limit septad with root given by |* e3 e5 e7 e11 e13&amp;gt; when r is even, which in close position is 9/8-5/4-11/8-3/2-13/8-7/4-2. If r is odd, let it denote a utonal pentad which in close position is 12/11-6/5-4/3-3/2-12/7-24/13-2&lt;br /&gt;
Let &amp;lt;r e3 e5 e7 e11 e13| denote an otonal 13-limit septad with root given by |* e3 e5 e7 e11 e13&amp;gt; when r is even, which in close position is 9/8-5/4-11/8-3/2-13/8-7/4-2. If r is odd, let it denote a utonal pentad which in close position is 12/11-6/5-4/3-3/2-12/7-24/13-2&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
Line 393: Line 466:
&amp;lt;7 11 16 20 24 26|note(n, [r e3 e5 e7 e11 e13]) = n.&lt;br /&gt;
&amp;lt;7 11 16 20 24 26|note(n, [r e3 e5 e7 e11 e13]) = n.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:22:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc11"&gt;&lt;a name="The orwell nonad tablet"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:22 --&gt;The orwell nonad tablet&lt;/h1&gt;
&lt;!-- ws:start:WikiTextHeadingRule:24:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc12"&gt;&lt;a name="The orwell nonad tablet"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:24 --&gt;The orwell nonad tablet&lt;/h1&gt;
The &lt;a class="wiki_link" href="/orwell%20tetrad"&gt;orwell nonad&lt;/a&gt; is the Orwell[9] MOS, considered as an essentially tempered dyadic chord (which it is, in the 15-limit.) While nine notes is a lot of notes for a chord, obviously in practice subchords could be used. &lt;br /&gt;
The &lt;a class="wiki_link" href="/orwell%20tetrad"&gt;orwell nonad&lt;/a&gt; is the Orwell[9] MOS, considered as an essentially tempered dyadic chord (which it is, in the 15-limit.) While nine notes is a lot of notes for a chord, obviously in practice subchords could be used. &lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;