Semicomma family: Difference between revisions

Wikispaces>xenwolf
**Imported revision 247384505 - Original comment: **
Wikispaces>xenwolf
**Imported revision 247384829 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:xenwolf|xenwolf]] and made on <tt>2011-08-21 11:17:34 UTC</tt>.<br>
: This revision was by author [[User:xenwolf|xenwolf]] and made on <tt>2011-08-21 11:19:41 UTC</tt>.<br>
: The original revision id was <tt>247384505</tt>.<br>
: The original revision id was <tt>247384829</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
<h4>Original Wikitext content:</h4>
<h4>Original Wikitext content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">The 5-limit parent comma for the semicomma family is the semicomma, 2109375/2097152 = |-21 3 7&gt;. This is the amount by which three pure 3/1 twelfths exceed seven pure 8/5 minor thirds. **Orson**, the [[5-limit]] temperament tempering it out, has a [[generator]] of 75/64, which is sharper than 7/6 by 225/224 when untempered, and less sharp than that in any good orson tempering, for example [[53edo]] or [[84edo]]. These give tunings to the generator which are sharp of 7/6 by less than five [[cent]]s, making it hard to treat orson as anything other than an (at least) 7-limit system, leading to orwell.
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">[[toc]]
The 5-limit parent comma for the semicomma family is the semicomma, 2109375/2097152 = |-21 3 7&gt;. This is the amount by which three pure 3/1 twelfths exceed seven pure 8/5 minor thirds. **Orson**, the [[5-limit]] temperament tempering it out, has a [[generator]] of 75/64, which is sharper than 7/6 by 225/224 when untempered, and less sharp than that in any good orson tempering, for example [[53edo]] or [[84edo]]. These give tunings to the generator which are sharp of 7/6 by less than five [[cent]]s, making it hard to treat orson as anything other than an (at least) 7-limit system, leading to orwell.


[[POTE tuning|POTE generator]]: 271.627
[[POTE tuning|POTE generator]]: 271.627
Line 13: Line 14:
EDOs: 22, 31, 53, 190, 253, 296
EDOs: 22, 31, 53, 190, 253, 296


==Seven limit children==  
=Seven limit children=  
The second comma of the [[Normal lists|normal comma list]] defines which 7-limit family member we are looking at. Adding 65536/64625 leads to orwell, but we could also add 1029/1024, leading to the 31&amp;159 temperament with wedgie &lt;&lt;21 -9 -7 -63 -70 9||, or 67528125/67108864, giving the 31&amp;243 temperament with wedgie &lt;&lt;28 -12 1 -84 -77 36||, or 4375/4374, giving the 53&amp;243 temperament with wedgie &lt;&lt;7 -3 61 -21 77 150||.
The second comma of the [[Normal lists|normal comma list]] defines which 7-limit family member we are looking at. Adding 65536/64625 leads to orwell, but we could also add 1029/1024, leading to the 31&amp;159 temperament with wedgie &lt;&lt;21 -9 -7 -63 -70 9||, or 67528125/67108864, giving the 31&amp;243 temperament with wedgie &lt;&lt;28 -12 1 -84 -77 36||, or 4375/4374, giving the 53&amp;243 temperament with wedgie &lt;&lt;7 -3 61 -21 77 150||.


===Orwell===  
==Orwell==  
So called because 19\84 (as a [[fraction of the octave]]) is a possible generator of this temperament, orwell divides the interval of a twelfth (a tempered 3/1 frequency ratio) into 7 equal steps. It's compatible with [[22edo|22]], [[31edo|31]], [[53edo|53-EDO]] and [[84edo]], and may be described as the 22&amp;31 temperament, or &lt;&lt;7 -3 8 -21 -7 27||. It's a good system in the [[7-limit]] and naturally extends into the [[11-limit]]. [[84edo]], with the 19\84 generator, provides a good tuning for the 5, 7 and 11 limits, but it does use its second-best 11. However, the 19\84 generator is remarkably close to the 11-limit [[POTE tuning]], as the generator is only 0.0024 cents sharper, and it is a good approximation to the 7-limit POTE generator also; hence 84 may be considered the most recommendable tuning in the 7-limit. [[53edo]] might be preferred in the 5-limit because of its nearly pure fifth and in the 11-limit because of it slightly better 11, though most of its 11-limit harmony is actually worse. Aside from the semicomma and 65625/65536, 7-limit orwell tempers out 2430/2401, the nuwell comma, 1728/1715, the orwellisma, 225/224, the septimal kleisma, and 6144/6125, the porwell comma.
So called because 19\84 (as a [[fraction of the octave]]) is a possible generator of this temperament, orwell divides the interval of a twelfth (a tempered 3/1 frequency ratio) into 7 equal steps. It's compatible with [[22edo|22]], [[31edo|31]], [[53edo|53-EDO]] and [[84edo]], and may be described as the 22&amp;31 temperament, or &lt;&lt;7 -3 8 -21 -7 27||. It's a good system in the [[7-limit]] and naturally extends into the [[11-limit]]. [[84edo]], with the 19\84 generator, provides a good tuning for the 5, 7 and 11 limits, but it does use its second-best 11. However, the 19\84 generator is remarkably close to the 11-limit [[POTE tuning]], as the generator is only 0.0024 cents sharper, and it is a good approximation to the 7-limit POTE generator also; hence 84 may be considered the most recommendable tuning in the 7-limit. [[53edo]] might be preferred in the 5-limit because of its nearly pure fifth and in the 11-limit because of it slightly better 11, though most of its 11-limit harmony is actually worse. Aside from the semicomma and 65625/65536, 7-limit orwell tempers out 2430/2401, the nuwell comma, 1728/1715, the orwellisma, 225/224, the septimal kleisma, and 6144/6125, the porwell comma.


Line 23: Line 24:
Orwell has MOS of size 9, 13, 22 and 31. The 9-note MOS is small enough to be retained in the mind as a genuine scale, is pleasing melodically, and has considerable harmonic resources despite its absence of 5-limit triads. The 13 note MOS has those, and of course the 22 and 31 note MOS are very well supplied with everything.
Orwell has MOS of size 9, 13, 22 and 31. The 9-note MOS is small enough to be retained in the mind as a genuine scale, is pleasing melodically, and has considerable harmonic resources despite its absence of 5-limit triads. The 13 note MOS has those, and of course the 22 and 31 note MOS are very well supplied with everything.


===Vital statistics===  
==Vital statistics==  
[[Comma|Commas]]: 225/224, 1728/1715
[[Comma|Commas]]: 225/224, 1728/1715


Line 42: Line 43:
EDOs: 22, 31, 53, 84, 137
EDOs: 22, 31, 53, 84, 137


==11-limit==  
=11-limit=  
[[Comma|Commas]]: 99/98, 121/120, 176/175
[[Comma|Commas]]: 99/98, 121/120, 176/175


Line 56: Line 57:
Badness: 99/98, 121/120, 176/175
Badness: 99/98, 121/120, 176/175


==Winston==  
=Winston=  
Commas: 66/65, 99/98, 105/104, 121/120
Commas: 66/65, 99/98, 105/104, 121/120


Line 65: Line 66:
Badness: 0.0199
Badness: 0.0199


==Julia==  
=Julia=  
Commas: 99/98, 121/120, 176/175, 275/273
Commas: 99/98, 121/120, 176/175, 275/273


Line 74: Line 75:
Badness: 0.0197
Badness: 0.0197


==Music==  
=Music=  
http://www.archive.org/details/TrioInOrwell by [[Gene Ward Smith]]
http://www.archive.org/details/TrioInOrwell by [[Gene Ward Smith]]
[[http://soundclick.com/share?songid=9101705|one drop of rain]], [[http://soundclick.com/share?songid=9101704|i've come with a bucket of roses]], and [[http://soundclick.com/share?songid=8839071|my own house]] by [[Andrew Heathwaite]]
[[http://soundclick.com/share?songid=9101705|one drop of rain]], [[http://soundclick.com/share?songid=9101704|i've come with a bucket of roses]], and [[http://soundclick.com/share?songid=8839071|my own house]] by [[Andrew Heathwaite]]
http://micro.soonlabel.com/orwell/daily20100721-gpo-owellian-cameras.mp3 by [[Chris Vaisvil]]</pre></div>
http://micro.soonlabel.com/orwell/daily20100721-gpo-owellian-cameras.mp3 by [[Chris Vaisvil]]</pre></div>
<h4>Original HTML content:</h4>
<h4>Original HTML content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;Semicomma family&lt;/title&gt;&lt;/head&gt;&lt;body&gt;The 5-limit parent comma for the semicomma family is the semicomma, 2109375/2097152 = |-21 3 7&amp;gt;. This is the amount by which three pure 3/1 twelfths exceed seven pure 8/5 minor thirds. &lt;strong&gt;Orson&lt;/strong&gt;, the &lt;a class="wiki_link" href="/5-limit"&gt;5-limit&lt;/a&gt; temperament tempering it out, has a &lt;a class="wiki_link" href="/generator"&gt;generator&lt;/a&gt; of 75/64, which is sharper than 7/6 by 225/224 when untempered, and less sharp than that in any good orson tempering, for example &lt;a class="wiki_link" href="/53edo"&gt;53edo&lt;/a&gt; or &lt;a class="wiki_link" href="/84edo"&gt;84edo&lt;/a&gt;. These give tunings to the generator which are sharp of 7/6 by less than five &lt;a class="wiki_link" href="/cent"&gt;cent&lt;/a&gt;s, making it hard to treat orson as anything other than an (at least) 7-limit system, leading to orwell.&lt;br /&gt;
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;Semicomma family&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;!-- ws:start:WikiTextTocRule:14:&amp;lt;img id=&amp;quot;wikitext@@toc@@normal&amp;quot; class=&amp;quot;WikiMedia WikiMediaToc&amp;quot; title=&amp;quot;Table of Contents&amp;quot; src=&amp;quot;/site/embedthumbnail/toc/normal?w=225&amp;amp;h=100&amp;quot;/&amp;gt; --&gt;&lt;div id="toc"&gt;&lt;h1 class="nopad"&gt;Table of Contents&lt;/h1&gt;&lt;!-- ws:end:WikiTextTocRule:14 --&gt;&lt;!-- ws:start:WikiTextTocRule:15: --&gt;&lt;div style="margin-left: 1em;"&gt;&lt;a href="#Seven limit children"&gt;Seven limit children&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:15 --&gt;&lt;!-- ws:start:WikiTextTocRule:16: --&gt;&lt;div style="margin-left: 2em;"&gt;&lt;a href="#Seven limit children-Orwell"&gt;Orwell&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:16 --&gt;&lt;!-- ws:start:WikiTextTocRule:17: --&gt;&lt;div style="margin-left: 2em;"&gt;&lt;a href="#Seven limit children-Vital statistics"&gt;Vital statistics&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:17 --&gt;&lt;!-- ws:start:WikiTextTocRule:18: --&gt;&lt;div style="margin-left: 1em;"&gt;&lt;a href="#x11-limit"&gt;11-limit&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:18 --&gt;&lt;!-- ws:start:WikiTextTocRule:19: --&gt;&lt;div style="margin-left: 1em;"&gt;&lt;a href="#Winston"&gt;Winston&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:19 --&gt;&lt;!-- ws:start:WikiTextTocRule:20: --&gt;&lt;div style="margin-left: 1em;"&gt;&lt;a href="#Julia"&gt;Julia&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:20 --&gt;&lt;!-- ws:start:WikiTextTocRule:21: --&gt;&lt;div style="margin-left: 1em;"&gt;&lt;a href="#Music"&gt;Music&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:21 --&gt;&lt;!-- ws:start:WikiTextTocRule:22: --&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:22 --&gt;The 5-limit parent comma for the semicomma family is the semicomma, 2109375/2097152 = |-21 3 7&amp;gt;. This is the amount by which three pure 3/1 twelfths exceed seven pure 8/5 minor thirds. &lt;strong&gt;Orson&lt;/strong&gt;, the &lt;a class="wiki_link" href="/5-limit"&gt;5-limit&lt;/a&gt; temperament tempering it out, has a &lt;a class="wiki_link" href="/generator"&gt;generator&lt;/a&gt; of 75/64, which is sharper than 7/6 by 225/224 when untempered, and less sharp than that in any good orson tempering, for example &lt;a class="wiki_link" href="/53edo"&gt;53edo&lt;/a&gt; or &lt;a class="wiki_link" href="/84edo"&gt;84edo&lt;/a&gt;. These give tunings to the generator which are sharp of 7/6 by less than five &lt;a class="wiki_link" href="/cent"&gt;cent&lt;/a&gt;s, making it hard to treat orson as anything other than an (at least) 7-limit system, leading to orwell.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;a class="wiki_link" href="/POTE%20tuning"&gt;POTE generator&lt;/a&gt;: 271.627&lt;br /&gt;
&lt;a class="wiki_link" href="/POTE%20tuning"&gt;POTE generator&lt;/a&gt;: 271.627&lt;br /&gt;
Line 86: Line 95:
EDOs: 22, 31, 53, 190, 253, 296&lt;br /&gt;
EDOs: 22, 31, 53, 190, 253, 296&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc0"&gt;&lt;a name="x-Seven limit children"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt;Seven limit children&lt;/h2&gt;
&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc0"&gt;&lt;a name="Seven limit children"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt;Seven limit children&lt;/h1&gt;
  The second comma of the &lt;a class="wiki_link" href="/Normal%20lists"&gt;normal comma list&lt;/a&gt; defines which 7-limit family member we are looking at. Adding 65536/64625 leads to orwell, but we could also add 1029/1024, leading to the 31&amp;amp;159 temperament with wedgie &amp;lt;&amp;lt;21 -9 -7 -63 -70 9||, or 67528125/67108864, giving the 31&amp;amp;243 temperament with wedgie &amp;lt;&amp;lt;28 -12 1 -84 -77 36||, or 4375/4374, giving the 53&amp;amp;243 temperament with wedgie &amp;lt;&amp;lt;7 -3 61 -21 77 150||.&lt;br /&gt;
  The second comma of the &lt;a class="wiki_link" href="/Normal%20lists"&gt;normal comma list&lt;/a&gt; defines which 7-limit family member we are looking at. Adding 65536/64625 leads to orwell, but we could also add 1029/1024, leading to the 31&amp;amp;159 temperament with wedgie &amp;lt;&amp;lt;21 -9 -7 -63 -70 9||, or 67528125/67108864, giving the 31&amp;amp;243 temperament with wedgie &amp;lt;&amp;lt;28 -12 1 -84 -77 36||, or 4375/4374, giving the 53&amp;amp;243 temperament with wedgie &amp;lt;&amp;lt;7 -3 61 -21 77 150||.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:2:&amp;lt;h3&amp;gt; --&gt;&lt;h3 id="toc1"&gt;&lt;a name="x-Seven limit children-Orwell"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:2 --&gt;Orwell&lt;/h3&gt;
&lt;!-- ws:start:WikiTextHeadingRule:2:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc1"&gt;&lt;a name="Seven limit children-Orwell"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:2 --&gt;Orwell&lt;/h2&gt;
  So called because 19\84 (as a &lt;a class="wiki_link" href="/fraction%20of%20the%20octave"&gt;fraction of the octave&lt;/a&gt;) is a possible generator of this temperament, orwell divides the interval of a twelfth (a tempered 3/1 frequency ratio) into 7 equal steps. It's compatible with &lt;a class="wiki_link" href="/22edo"&gt;22&lt;/a&gt;, &lt;a class="wiki_link" href="/31edo"&gt;31&lt;/a&gt;, &lt;a class="wiki_link" href="/53edo"&gt;53-EDO&lt;/a&gt; and &lt;a class="wiki_link" href="/84edo"&gt;84edo&lt;/a&gt;, and may be described as the 22&amp;amp;31 temperament, or &amp;lt;&amp;lt;7 -3 8 -21 -7 27||. It's a good system in the &lt;a class="wiki_link" href="/7-limit"&gt;7-limit&lt;/a&gt; and naturally extends into the &lt;a class="wiki_link" href="/11-limit"&gt;11-limit&lt;/a&gt;. &lt;a class="wiki_link" href="/84edo"&gt;84edo&lt;/a&gt;, with the 19\84 generator, provides a good tuning for the 5, 7 and 11 limits, but it does use its second-best 11. However, the 19\84 generator is remarkably close to the 11-limit &lt;a class="wiki_link" href="/POTE%20tuning"&gt;POTE tuning&lt;/a&gt;, as the generator is only 0.0024 cents sharper, and it is a good approximation to the 7-limit POTE generator also; hence 84 may be considered the most recommendable tuning in the 7-limit. &lt;a class="wiki_link" href="/53edo"&gt;53edo&lt;/a&gt; might be preferred in the 5-limit because of its nearly pure fifth and in the 11-limit because of it slightly better 11, though most of its 11-limit harmony is actually worse. Aside from the semicomma and 65625/65536, 7-limit orwell tempers out 2430/2401, the nuwell comma, 1728/1715, the orwellisma, 225/224, the septimal kleisma, and 6144/6125, the porwell comma.&lt;br /&gt;
  So called because 19\84 (as a &lt;a class="wiki_link" href="/fraction%20of%20the%20octave"&gt;fraction of the octave&lt;/a&gt;) is a possible generator of this temperament, orwell divides the interval of a twelfth (a tempered 3/1 frequency ratio) into 7 equal steps. It's compatible with &lt;a class="wiki_link" href="/22edo"&gt;22&lt;/a&gt;, &lt;a class="wiki_link" href="/31edo"&gt;31&lt;/a&gt;, &lt;a class="wiki_link" href="/53edo"&gt;53-EDO&lt;/a&gt; and &lt;a class="wiki_link" href="/84edo"&gt;84edo&lt;/a&gt;, and may be described as the 22&amp;amp;31 temperament, or &amp;lt;&amp;lt;7 -3 8 -21 -7 27||. It's a good system in the &lt;a class="wiki_link" href="/7-limit"&gt;7-limit&lt;/a&gt; and naturally extends into the &lt;a class="wiki_link" href="/11-limit"&gt;11-limit&lt;/a&gt;. &lt;a class="wiki_link" href="/84edo"&gt;84edo&lt;/a&gt;, with the 19\84 generator, provides a good tuning for the 5, 7 and 11 limits, but it does use its second-best 11. However, the 19\84 generator is remarkably close to the 11-limit &lt;a class="wiki_link" href="/POTE%20tuning"&gt;POTE tuning&lt;/a&gt;, as the generator is only 0.0024 cents sharper, and it is a good approximation to the 7-limit POTE generator also; hence 84 may be considered the most recommendable tuning in the 7-limit. &lt;a class="wiki_link" href="/53edo"&gt;53edo&lt;/a&gt; might be preferred in the 5-limit because of its nearly pure fifth and in the 11-limit because of it slightly better 11, though most of its 11-limit harmony is actually worse. Aside from the semicomma and 65625/65536, 7-limit orwell tempers out 2430/2401, the nuwell comma, 1728/1715, the orwellisma, 225/224, the septimal kleisma, and 6144/6125, the porwell comma.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
Line 96: Line 105:
Orwell has MOS of size 9, 13, 22 and 31. The 9-note MOS is small enough to be retained in the mind as a genuine scale, is pleasing melodically, and has considerable harmonic resources despite its absence of 5-limit triads. The 13 note MOS has those, and of course the 22 and 31 note MOS are very well supplied with everything.&lt;br /&gt;
Orwell has MOS of size 9, 13, 22 and 31. The 9-note MOS is small enough to be retained in the mind as a genuine scale, is pleasing melodically, and has considerable harmonic resources despite its absence of 5-limit triads. The 13 note MOS has those, and of course the 22 and 31 note MOS are very well supplied with everything.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:4:&amp;lt;h3&amp;gt; --&gt;&lt;h3 id="toc2"&gt;&lt;a name="x-Seven limit children-Vital statistics"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:4 --&gt;Vital statistics&lt;/h3&gt;
&lt;!-- ws:start:WikiTextHeadingRule:4:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc2"&gt;&lt;a name="Seven limit children-Vital statistics"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:4 --&gt;Vital statistics&lt;/h2&gt;
  &lt;a class="wiki_link" href="/Comma"&gt;Commas&lt;/a&gt;: 225/224, 1728/1715&lt;br /&gt;
  &lt;a class="wiki_link" href="/Comma"&gt;Commas&lt;/a&gt;: 225/224, 1728/1715&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
Line 115: Line 124:
EDOs: 22, 31, 53, 84, 137&lt;br /&gt;
EDOs: 22, 31, 53, 84, 137&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:6:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc3"&gt;&lt;a name="x-11-limit"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:6 --&gt;11-limit&lt;/h2&gt;
&lt;!-- ws:start:WikiTextHeadingRule:6:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc3"&gt;&lt;a name="x11-limit"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:6 --&gt;11-limit&lt;/h1&gt;
  &lt;a class="wiki_link" href="/Comma"&gt;Commas&lt;/a&gt;: 99/98, 121/120, 176/175&lt;br /&gt;
  &lt;a class="wiki_link" href="/Comma"&gt;Commas&lt;/a&gt;: 99/98, 121/120, 176/175&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
Line 129: Line 138:
Badness: 99/98, 121/120, 176/175&lt;br /&gt;
Badness: 99/98, 121/120, 176/175&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:8:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc4"&gt;&lt;a name="x-Winston"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:8 --&gt;Winston&lt;/h2&gt;
&lt;!-- ws:start:WikiTextHeadingRule:8:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc4"&gt;&lt;a name="Winston"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:8 --&gt;Winston&lt;/h1&gt;
  Commas: 66/65, 99/98, 105/104, 121/120&lt;br /&gt;
  Commas: 66/65, 99/98, 105/104, 121/120&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
Line 138: Line 147:
Badness: 0.0199&lt;br /&gt;
Badness: 0.0199&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:10:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc5"&gt;&lt;a name="x-Julia"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:10 --&gt;Julia&lt;/h2&gt;
&lt;!-- ws:start:WikiTextHeadingRule:10:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc5"&gt;&lt;a name="Julia"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:10 --&gt;Julia&lt;/h1&gt;
  Commas: 99/98, 121/120, 176/175, 275/273&lt;br /&gt;
  Commas: 99/98, 121/120, 176/175, 275/273&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
Line 147: Line 156:
Badness: 0.0197&lt;br /&gt;
Badness: 0.0197&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:12:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc6"&gt;&lt;a name="x-Music"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:12 --&gt;Music&lt;/h2&gt;
&lt;!-- ws:start:WikiTextHeadingRule:12:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc6"&gt;&lt;a name="Music"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:12 --&gt;Music&lt;/h1&gt;
  &lt;!-- ws:start:WikiTextUrlRule:116:http://www.archive.org/details/TrioInOrwell --&gt;&lt;a class="wiki_link_ext" href="http://www.archive.org/details/TrioInOrwell" rel="nofollow"&gt;http://www.archive.org/details/TrioInOrwell&lt;/a&gt;&lt;!-- ws:end:WikiTextUrlRule:116 --&gt; by &lt;a class="wiki_link" href="/Gene%20Ward%20Smith"&gt;Gene Ward Smith&lt;/a&gt;&lt;br /&gt;
  &lt;!-- ws:start:WikiTextUrlRule:125:http://www.archive.org/details/TrioInOrwell --&gt;&lt;a class="wiki_link_ext" href="http://www.archive.org/details/TrioInOrwell" rel="nofollow"&gt;http://www.archive.org/details/TrioInOrwell&lt;/a&gt;&lt;!-- ws:end:WikiTextUrlRule:125 --&gt; by &lt;a class="wiki_link" href="/Gene%20Ward%20Smith"&gt;Gene Ward Smith&lt;/a&gt;&lt;br /&gt;
&lt;a class="wiki_link_ext" href="http://soundclick.com/share?songid=9101705" rel="nofollow"&gt;one drop of rain&lt;/a&gt;, &lt;a class="wiki_link_ext" href="http://soundclick.com/share?songid=9101704" rel="nofollow"&gt;i've come with a bucket of roses&lt;/a&gt;, and &lt;a class="wiki_link_ext" href="http://soundclick.com/share?songid=8839071" rel="nofollow"&gt;my own house&lt;/a&gt; by &lt;a class="wiki_link" href="/Andrew%20Heathwaite"&gt;Andrew Heathwaite&lt;/a&gt;&lt;br /&gt;
&lt;a class="wiki_link_ext" href="http://soundclick.com/share?songid=9101705" rel="nofollow"&gt;one drop of rain&lt;/a&gt;, &lt;a class="wiki_link_ext" href="http://soundclick.com/share?songid=9101704" rel="nofollow"&gt;i've come with a bucket of roses&lt;/a&gt;, and &lt;a class="wiki_link_ext" href="http://soundclick.com/share?songid=8839071" rel="nofollow"&gt;my own house&lt;/a&gt; by &lt;a class="wiki_link" href="/Andrew%20Heathwaite"&gt;Andrew Heathwaite&lt;/a&gt;&lt;br /&gt;
&lt;!-- ws:start:WikiTextUrlRule:117:http://micro.soonlabel.com/orwell/daily20100721-gpo-owellian-cameras.mp3 --&gt;&lt;a class="wiki_link_ext" href="http://micro.soonlabel.com/orwell/daily20100721-gpo-owellian-cameras.mp3" rel="nofollow"&gt;http://micro.soonlabel.com/orwell/daily20100721-gpo-owellian-cameras.mp3&lt;/a&gt;&lt;!-- ws:end:WikiTextUrlRule:117 --&gt; by &lt;a class="wiki_link" href="/Chris%20Vaisvil"&gt;Chris Vaisvil&lt;/a&gt;&lt;/body&gt;&lt;/html&gt;</pre></div>
&lt;!-- ws:start:WikiTextUrlRule:126:http://micro.soonlabel.com/orwell/daily20100721-gpo-owellian-cameras.mp3 --&gt;&lt;a class="wiki_link_ext" href="http://micro.soonlabel.com/orwell/daily20100721-gpo-owellian-cameras.mp3" rel="nofollow"&gt;http://micro.soonlabel.com/orwell/daily20100721-gpo-owellian-cameras.mp3&lt;/a&gt;&lt;!-- ws:end:WikiTextUrlRule:126 --&gt; by &lt;a class="wiki_link" href="/Chris%20Vaisvil"&gt;Chris Vaisvil&lt;/a&gt;&lt;/body&gt;&lt;/html&gt;</pre></div>