Semicomma family: Difference between revisions

Wikispaces>genewardsmith
**Imported revision 303361900 - Original comment: **
Wikispaces>guest
**Imported revision 306992522 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2012-02-20 11:38:45 UTC</tt>.<br>
: This revision was by author [[User:guest|guest]] and made on <tt>2012-03-01 21:09:23 UTC</tt>.<br>
: The original revision id was <tt>303361900</tt>.<br>
: The original revision id was <tt>306992522</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
<h4>Original Wikitext content:</h4>
<h4>Original Wikitext content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">[[toc]]
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">[[toc]]
 
=Orson=  
=Orson=
The 5-limit parent comma for the **semicomma family** is the semicomma, 2109375/2097152 = |-21 3 7&gt;. This is the amount by which three pure 3/1 twelfths exceed seven pure 8/5 minor thirds. **Orson**, the [[5-limit]] temperament tempering it out, has a [[generator]] of 75/64, which is sharper than 7/6 by 225/224 when untempered, and less sharp than that in any good orson tempering, for example [[53edo]] or [[84edo]]. These give tunings to the generator which are sharp of 7/6 by less than five [[cent]]s, making it hard to treat orson as anything other than an (at least) 7-limit system, leading to orwell.
The 5-limit parent comma for the **semicomma family** is the semicomma, 2109375/2097152 = |-21 3 7&gt;. This is the amount by which three pure 3/1 twelfths exceed seven pure 8/5 minor thirds. **Orson**, the [[5-limit]] temperament tempering it out, has a [[generator]] of 75/64, which is sharper than 7/6 by 225/224 when untempered, and less sharp than that in any good orson tempering, for example [[53edo]] or [[84edo]]. These give tunings to the generator which are sharp of 7/6 by less than five [[cent]]s, making it hard to treat orson as anything other than an (at least) 7-limit system, leading to orwell.


Line 19: Line 18:
Badness: 0.0408
Badness: 0.0408


==Seven limit children==
==Seven limit children==  
The second comma of the [[Normal lists|normal comma list]] defines which 7-limit family member we are looking at. Adding 65536/64625 leads to orwell, but we could also add 1029/1024, leading to the 31&amp;159 temperament with wedgie &lt;&lt;21 -9 -7 -63 -70 9||, or 67528125/67108864, giving the 31&amp;243 temperament with wedgie &lt;&lt;28 -12 1 -84 -77 36||, or 4375/4374, giving the 53&amp;243 temperament with wedgie &lt;&lt;7 -3 61 -21 77 150||.
The second comma of the [[Normal lists|normal comma list]] defines which 7-limit family member we are looking at. Adding 65536/64625 leads to orwell, but we could also add 1029/1024, leading to the 31&amp;159 temperament with wedgie &lt;&lt;21 -9 -7 -63 -70 9||, or 67528125/67108864, giving the 31&amp;243 temperament with wedgie &lt;&lt;28 -12 1 -84 -77 36||, or 4375/4374, giving the 53&amp;243 temperament with wedgie &lt;&lt;7 -3 61 -21 77 150||.


=Orwell=
=Orwell=  
Main article: [[Orwell]]
Main article: [[Orwell]]
So called because 19\84 (as a [[fraction of the octave]]) is a possible generator of this temperament, orwell divides the interval of a twelfth (a tempered 3/1 frequency ratio) into 7 equal steps. It's compatible with [[22edo|22]], [[31edo|31]], [[53edo|53]] and [[84edo|84]] equal, and may be described as the 22&amp;31 temperament, or &lt;&lt;7 -3 8 -21 -7 27||. It's a good system in the [[7-limit]] and naturally extends into the [[11-limit]]. [[84edo]], with the 19\84 generator, provides a good tuning for the 5, 7 and 11 limits, but it does use its second-best 11. However, the 19\84 generator is remarkably close to the 11-limit [[POTE tuning]], as the generator is only 0.0024 cents sharper, and it is a good approximation to the 7-limit POTE generator also; hence 84 may be considered the most recommendable tuning in the 7-limit. [[53edo]] might be preferred in the 5-limit because of its nearly pure fifth and in the 11-limit because of it slightly better 11, though most of its 11-limit harmony is actually worse. Aside from the semicomma and 65625/65536, 7-limit orwell tempers out 2430/2401, the nuwell comma, 1728/1715, the orwellisma, 225/224, the septimal kleisma, and 6144/6125, the porwell comma.
So called because 19\84 (as a [[fraction of the octave]]) is a possible generator of this temperament, orwell divides the interval of a twelfth (a tempered 3/1 frequency ratio) into 7 equal steps. It's compatible with [[22edo|22]], [[31edo|31]], [[53edo|53]] and [[84edo|84]] equal, and may be described as the 22&amp;31 temperament, or &lt;&lt;7 -3 8 -21 -7 27||. It's a good system in the [[7-limit]] and naturally extends into the [[11-limit]]. [[84edo]], with the 19\84 generator, provides a good tuning for the 5, 7 and 11 limits, but it does use its second-best 11. However, the 19\84 generator is remarkably close to the 11-limit [[POTE tuning]], as the generator is only 0.0024 cents sharper, and it is a good approximation to the 7-limit POTE generator also; hence 84 may be considered the most recommendable tuning in the 7-limit. [[53edo]] might be preferred in the 5-limit because of its nearly pure fifth and in the 11-limit because of it slightly better 11, though most of its 11-limit harmony is actually worse. Aside from the semicomma and 65625/65536, 7-limit orwell tempers out 2430/2401, the nuwell comma, 1728/1715, the orwellisma, 225/224, the septimal kleisma, and 6144/6125, the porwell comma.
Line 50: Line 49:
Badness: 0.0207
Badness: 0.0207


==11-limit==
==11-limit==  
[[Comma|Commas]]: 99/98, 121/120, 176/175
[[Comma|Commas]]: 99/98, 121/120, 176/175


Line 64: Line 63:
Badness: 0.0152
Badness: 0.0152


==13-limit==
==13-limit==  
Commas: 99/98, 121/120, 176/175, 275/273
Commas: 99/98, 121/120, 176/175, 275/273


Line 73: Line 72:
Badness: 0.0197
Badness: 0.0197


==Blair==
==Blair==  
Commas: 65/64, 78/77, 91/90, 99/98
Commas: 65/64, 78/77, 91/90, 99/98


Line 82: Line 81:
Badness: 0.0231
Badness: 0.0231


==Newspeak==
==Newspeak==  
Commas: 225/224, 441/440, 1728/1715
Commas: 225/224, 441/440, 1728/1715


Line 91: Line 90:
Badness: 0.0314
Badness: 0.0314


==Winston==
==Winston==  
Commas: 66/65, 99/98, 105/104, 121/120
Commas: 66/65, 99/98, 105/104, 121/120


Line 100: Line 99:
Badness: 0.0199
Badness: 0.0199


=Doublethink=
=Doublethink=  
Commas: 99/98, 121/120, 169/168, 176/175
Commas: 99/98, 121/120, 169/168, 176/175


Line 106: Line 105:


Map: [&lt;1 0 3 1 3 2|, &lt;0 14 -6 16 4 15|]
Map: [&lt;1 0 3 1 3 2|, &lt;0 14 -6 16 4 15|]
EDOs: 9, 44, 53, 115ef, 168ef
EDOs: 9, 35, 44, 53, 61, 115ef, 168ef
Badness: 0.0271
Badness: 0.0271


Line 118: Line 117:
Badness: 0.0384
Badness: 0.0384


=Triwell=
=Triwell=  
Commas: 1029/1024, 235298/234375
Commas: 1029/1024, 235298/234375


Line 128: Line 127:
Badness: 0.0806
Badness: 0.0806


==11-limit==
==11-limit==  
Commas: 385/384, 441/440, 456533/455625
Commas: 385/384, 441/440, 456533/455625


Line 156: Line 155:
&lt;!-- ws:end:WikiTextTocRule:38 --&gt;&lt;!-- ws:start:WikiTextTocRule:39: --&gt;&lt;div style="margin-left: 1em;"&gt;&lt;a href="#Music"&gt;Music&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:38 --&gt;&lt;!-- ws:start:WikiTextTocRule:39: --&gt;&lt;div style="margin-left: 1em;"&gt;&lt;a href="#Music"&gt;Music&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:39 --&gt;&lt;!-- ws:start:WikiTextTocRule:40: --&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:39 --&gt;&lt;!-- ws:start:WikiTextTocRule:40: --&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:40 --&gt;&lt;br /&gt;
&lt;!-- ws:end:WikiTextTocRule:40 --&gt;&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc0"&gt;&lt;a name="Orson"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt;Orson&lt;/h1&gt;
&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc0"&gt;&lt;a name="Orson"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt;Orson&lt;/h1&gt;
The 5-limit parent comma for the &lt;strong&gt;semicomma family&lt;/strong&gt; is the semicomma, 2109375/2097152 = |-21 3 7&amp;gt;. This is the amount by which three pure 3/1 twelfths exceed seven pure 8/5 minor thirds. &lt;strong&gt;Orson&lt;/strong&gt;, the &lt;a class="wiki_link" href="/5-limit"&gt;5-limit&lt;/a&gt; temperament tempering it out, has a &lt;a class="wiki_link" href="/generator"&gt;generator&lt;/a&gt; of 75/64, which is sharper than 7/6 by 225/224 when untempered, and less sharp than that in any good orson tempering, for example &lt;a class="wiki_link" href="/53edo"&gt;53edo&lt;/a&gt; or &lt;a class="wiki_link" href="/84edo"&gt;84edo&lt;/a&gt;. These give tunings to the generator which are sharp of 7/6 by less than five &lt;a class="wiki_link" href="/cent"&gt;cent&lt;/a&gt;s, making it hard to treat orson as anything other than an (at least) 7-limit system, leading to orwell.&lt;br /&gt;
The 5-limit parent comma for the &lt;strong&gt;semicomma family&lt;/strong&gt; is the semicomma, 2109375/2097152 = |-21 3 7&amp;gt;. This is the amount by which three pure 3/1 twelfths exceed seven pure 8/5 minor thirds. &lt;strong&gt;Orson&lt;/strong&gt;, the &lt;a class="wiki_link" href="/5-limit"&gt;5-limit&lt;/a&gt; temperament tempering it out, has a &lt;a class="wiki_link" href="/generator"&gt;generator&lt;/a&gt; of 75/64, which is sharper than 7/6 by 225/224 when untempered, and less sharp than that in any good orson tempering, for example &lt;a class="wiki_link" href="/53edo"&gt;53edo&lt;/a&gt; or &lt;a class="wiki_link" href="/84edo"&gt;84edo&lt;/a&gt;. These give tunings to the generator which are sharp of 7/6 by less than five &lt;a class="wiki_link" href="/cent"&gt;cent&lt;/a&gt;s, making it hard to treat orson as anything other than an (at least) 7-limit system, leading to orwell.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
Comma: 2109375/2097152&lt;br /&gt;
Comma: 2109375/2097152&lt;br /&gt;
Line 169: Line 167:
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:2:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc1"&gt;&lt;a name="Orson-Seven limit children"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:2 --&gt;Seven limit children&lt;/h2&gt;
&lt;!-- ws:start:WikiTextHeadingRule:2:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc1"&gt;&lt;a name="Orson-Seven limit children"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:2 --&gt;Seven limit children&lt;/h2&gt;
The second comma of the &lt;a class="wiki_link" href="/Normal%20lists"&gt;normal comma list&lt;/a&gt; defines which 7-limit family member we are looking at. Adding 65536/64625 leads to orwell, but we could also add 1029/1024, leading to the 31&amp;amp;159 temperament with wedgie &amp;lt;&amp;lt;21 -9 -7 -63 -70 9||, or 67528125/67108864, giving the 31&amp;amp;243 temperament with wedgie &amp;lt;&amp;lt;28 -12 1 -84 -77 36||, or 4375/4374, giving the 53&amp;amp;243 temperament with wedgie &amp;lt;&amp;lt;7 -3 61 -21 77 150||.&lt;br /&gt;
The second comma of the &lt;a class="wiki_link" href="/Normal%20lists"&gt;normal comma list&lt;/a&gt; defines which 7-limit family member we are looking at. Adding 65536/64625 leads to orwell, but we could also add 1029/1024, leading to the 31&amp;amp;159 temperament with wedgie &amp;lt;&amp;lt;21 -9 -7 -63 -70 9||, or 67528125/67108864, giving the 31&amp;amp;243 temperament with wedgie &amp;lt;&amp;lt;28 -12 1 -84 -77 36||, or 4375/4374, giving the 53&amp;amp;243 temperament with wedgie &amp;lt;&amp;lt;7 -3 61 -21 77 150||.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:4:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc2"&gt;&lt;a name="Orwell"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:4 --&gt;Orwell&lt;/h1&gt;
&lt;!-- ws:start:WikiTextHeadingRule:4:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc2"&gt;&lt;a name="Orwell"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:4 --&gt;Orwell&lt;/h1&gt;
Main article: &lt;a class="wiki_link" href="/Orwell"&gt;Orwell&lt;/a&gt;&lt;br /&gt;
Main article: &lt;a class="wiki_link" href="/Orwell"&gt;Orwell&lt;/a&gt;&lt;br /&gt;
So called because 19\84 (as a &lt;a class="wiki_link" href="/fraction%20of%20the%20octave"&gt;fraction of the octave&lt;/a&gt;) is a possible generator of this temperament, orwell divides the interval of a twelfth (a tempered 3/1 frequency ratio) into 7 equal steps. It's compatible with &lt;a class="wiki_link" href="/22edo"&gt;22&lt;/a&gt;, &lt;a class="wiki_link" href="/31edo"&gt;31&lt;/a&gt;, &lt;a class="wiki_link" href="/53edo"&gt;53&lt;/a&gt; and &lt;a class="wiki_link" href="/84edo"&gt;84&lt;/a&gt; equal, and may be described as the 22&amp;amp;31 temperament, or &amp;lt;&amp;lt;7 -3 8 -21 -7 27||. It's a good system in the &lt;a class="wiki_link" href="/7-limit"&gt;7-limit&lt;/a&gt; and naturally extends into the &lt;a class="wiki_link" href="/11-limit"&gt;11-limit&lt;/a&gt;. &lt;a class="wiki_link" href="/84edo"&gt;84edo&lt;/a&gt;, with the 19\84 generator, provides a good tuning for the 5, 7 and 11 limits, but it does use its second-best 11. However, the 19\84 generator is remarkably close to the 11-limit &lt;a class="wiki_link" href="/POTE%20tuning"&gt;POTE tuning&lt;/a&gt;, as the generator is only 0.0024 cents sharper, and it is a good approximation to the 7-limit POTE generator also; hence 84 may be considered the most recommendable tuning in the 7-limit. &lt;a class="wiki_link" href="/53edo"&gt;53edo&lt;/a&gt; might be preferred in the 5-limit because of its nearly pure fifth and in the 11-limit because of it slightly better 11, though most of its 11-limit harmony is actually worse. Aside from the semicomma and 65625/65536, 7-limit orwell tempers out 2430/2401, the nuwell comma, 1728/1715, the orwellisma, 225/224, the septimal kleisma, and 6144/6125, the porwell comma.&lt;br /&gt;
So called because 19\84 (as a &lt;a class="wiki_link" href="/fraction%20of%20the%20octave"&gt;fraction of the octave&lt;/a&gt;) is a possible generator of this temperament, orwell divides the interval of a twelfth (a tempered 3/1 frequency ratio) into 7 equal steps. It's compatible with &lt;a class="wiki_link" href="/22edo"&gt;22&lt;/a&gt;, &lt;a class="wiki_link" href="/31edo"&gt;31&lt;/a&gt;, &lt;a class="wiki_link" href="/53edo"&gt;53&lt;/a&gt; and &lt;a class="wiki_link" href="/84edo"&gt;84&lt;/a&gt; equal, and may be described as the 22&amp;amp;31 temperament, or &amp;lt;&amp;lt;7 -3 8 -21 -7 27||. It's a good system in the &lt;a class="wiki_link" href="/7-limit"&gt;7-limit&lt;/a&gt; and naturally extends into the &lt;a class="wiki_link" href="/11-limit"&gt;11-limit&lt;/a&gt;. &lt;a class="wiki_link" href="/84edo"&gt;84edo&lt;/a&gt;, with the 19\84 generator, provides a good tuning for the 5, 7 and 11 limits, but it does use its second-best 11. However, the 19\84 generator is remarkably close to the 11-limit &lt;a class="wiki_link" href="/POTE%20tuning"&gt;POTE tuning&lt;/a&gt;, as the generator is only 0.0024 cents sharper, and it is a good approximation to the 7-limit POTE generator also; hence 84 may be considered the most recommendable tuning in the 7-limit. &lt;a class="wiki_link" href="/53edo"&gt;53edo&lt;/a&gt; might be preferred in the 5-limit because of its nearly pure fifth and in the 11-limit because of it slightly better 11, though most of its 11-limit harmony is actually worse. Aside from the semicomma and 65625/65536, 7-limit orwell tempers out 2430/2401, the nuwell comma, 1728/1715, the orwellisma, 225/224, the septimal kleisma, and 6144/6125, the porwell comma.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
Line 200: Line 198:
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:6:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc3"&gt;&lt;a name="Orwell-11-limit"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:6 --&gt;11-limit&lt;/h2&gt;
&lt;!-- ws:start:WikiTextHeadingRule:6:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc3"&gt;&lt;a name="Orwell-11-limit"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:6 --&gt;11-limit&lt;/h2&gt;
&lt;a class="wiki_link" href="/Comma"&gt;Commas&lt;/a&gt;: 99/98, 121/120, 176/175&lt;br /&gt;
&lt;a class="wiki_link" href="/Comma"&gt;Commas&lt;/a&gt;: 99/98, 121/120, 176/175&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;a class="wiki_link" href="/Minimax%20tuning"&gt;Minimax tuning&lt;/a&gt;&lt;br /&gt;
&lt;a class="wiki_link" href="/Minimax%20tuning"&gt;Minimax tuning&lt;/a&gt;&lt;br /&gt;
Line 214: Line 212:
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:8:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc4"&gt;&lt;a name="Orwell-13-limit"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:8 --&gt;13-limit&lt;/h2&gt;
&lt;!-- ws:start:WikiTextHeadingRule:8:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc4"&gt;&lt;a name="Orwell-13-limit"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:8 --&gt;13-limit&lt;/h2&gt;
Commas: 99/98, 121/120, 176/175, 275/273&lt;br /&gt;
Commas: 99/98, 121/120, 176/175, 275/273&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;a class="wiki_link" href="/POTE%20tuning"&gt;POTE generator&lt;/a&gt;: ~7/6 = 271.546&lt;br /&gt;
&lt;a class="wiki_link" href="/POTE%20tuning"&gt;POTE generator&lt;/a&gt;: ~7/6 = 271.546&lt;br /&gt;
Line 223: Line 221:
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:10:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc5"&gt;&lt;a name="Orwell-Blair"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:10 --&gt;Blair&lt;/h2&gt;
&lt;!-- ws:start:WikiTextHeadingRule:10:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc5"&gt;&lt;a name="Orwell-Blair"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:10 --&gt;Blair&lt;/h2&gt;
Commas: 65/64, 78/77, 91/90, 99/98&lt;br /&gt;
Commas: 65/64, 78/77, 91/90, 99/98&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
POTE generator: ~7/6 = 271.301&lt;br /&gt;
POTE generator: ~7/6 = 271.301&lt;br /&gt;
Line 232: Line 230:
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:12:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc6"&gt;&lt;a name="Orwell-Newspeak"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:12 --&gt;Newspeak&lt;/h2&gt;
&lt;!-- ws:start:WikiTextHeadingRule:12:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc6"&gt;&lt;a name="Orwell-Newspeak"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:12 --&gt;Newspeak&lt;/h2&gt;
Commas: 225/224, 441/440, 1728/1715&lt;br /&gt;
Commas: 225/224, 441/440, 1728/1715&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
POTE tuning: ~7/6 = 271.288&lt;br /&gt;
POTE tuning: ~7/6 = 271.288&lt;br /&gt;
Line 241: Line 239:
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:14:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc7"&gt;&lt;a name="Orwell-Winston"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:14 --&gt;Winston&lt;/h2&gt;
&lt;!-- ws:start:WikiTextHeadingRule:14:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc7"&gt;&lt;a name="Orwell-Winston"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:14 --&gt;Winston&lt;/h2&gt;
Commas: 66/65, 99/98, 105/104, 121/120&lt;br /&gt;
Commas: 66/65, 99/98, 105/104, 121/120&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;a class="wiki_link" href="/POTE%20tuning"&gt;POTE generator&lt;/a&gt;: ~7/6 = 271.088&lt;br /&gt;
&lt;a class="wiki_link" href="/POTE%20tuning"&gt;POTE generator&lt;/a&gt;: ~7/6 = 271.088&lt;br /&gt;
Line 250: Line 248:
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:16:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc8"&gt;&lt;a name="Doublethink"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:16 --&gt;Doublethink&lt;/h1&gt;
&lt;!-- ws:start:WikiTextHeadingRule:16:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc8"&gt;&lt;a name="Doublethink"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:16 --&gt;Doublethink&lt;/h1&gt;
Commas: 99/98, 121/120, 169/168, 176/175&lt;br /&gt;
Commas: 99/98, 121/120, 169/168, 176/175&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
POTE tuning: ~13/12 = 135.723&lt;br /&gt;
POTE tuning: ~13/12 = 135.723&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
Map: [&amp;lt;1 0 3 1 3 2|, &amp;lt;0 14 -6 16 4 15|]&lt;br /&gt;
Map: [&amp;lt;1 0 3 1 3 2|, &amp;lt;0 14 -6 16 4 15|]&lt;br /&gt;
EDOs: 9, 44, 53, 115ef, 168ef&lt;br /&gt;
EDOs: 9, 35, 44, 53, 61, 115ef, 168ef&lt;br /&gt;
Badness: 0.0271&lt;br /&gt;
Badness: 0.0271&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
Line 268: Line 266:
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:20:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc10"&gt;&lt;a name="Triwell"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:20 --&gt;Triwell&lt;/h1&gt;
&lt;!-- ws:start:WikiTextHeadingRule:20:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc10"&gt;&lt;a name="Triwell"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:20 --&gt;Triwell&lt;/h1&gt;
Commas: 1029/1024, 235298/234375&lt;br /&gt;
Commas: 1029/1024, 235298/234375&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
POTE generator: ~448/375 = 309.472&lt;br /&gt;
POTE generator: ~448/375 = 309.472&lt;br /&gt;
Line 278: Line 276:
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:22:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc11"&gt;&lt;a name="Triwell-11-limit"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:22 --&gt;11-limit&lt;/h2&gt;
&lt;!-- ws:start:WikiTextHeadingRule:22:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc11"&gt;&lt;a name="Triwell-11-limit"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:22 --&gt;11-limit&lt;/h2&gt;
Commas: 385/384, 441/440, 456533/455625&lt;br /&gt;
Commas: 385/384, 441/440, 456533/455625&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
POTE generator: ~448/375 = 309.471&lt;br /&gt;
POTE generator: ~448/375 = 309.471&lt;br /&gt;