Projective tuning space: Difference between revisions

Wikispaces>genewardsmith
**Imported revision 522055556 - Original comment: **
Wikispaces>genewardsmith
**Imported revision 524164486 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2014-09-13 11:16:13 UTC</tt>.<br>
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2014-09-28 20:03:20 UTC</tt>.<br>
: The original revision id was <tt>522055556</tt>.<br>
: The original revision id was <tt>524164486</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
<h4>Original Wikitext content:</h4>
<h4>Original Wikitext content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">Projective tuning space is the [[http://en.wikipedia.org/wiki/Projectiavization|projectivization]] of ordinary [[Vals and tuning space|tuning space]]. If a point in tuning space does not map octaves to zero, we can divide by the value to which "2" is mapped and obtain a pure-octaves tuning which serves to represent the point in projective tuning space. If the dimension of tuning space is n, the dimesion of the correponding projective space is n-1. In particullar, 5-limit projective tuning space is two-dimensional, making it easy to depict it graphically.
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">Projective tuning space is the [[http://en.wikipedia.org/wiki/Projectiavization|projectivization]] of ordinary [[Vals and tuning space|tuning space]]. If a point in tuning space does not map octaves to zero, we can divide by the value to which "2" is mapped and obtain a pure-octaves tuning which serves to represent the point in projective tuning space. If the dimension of tuning space is n, the dimension of the corresponding projective space is n-1. In particular, 5-limit projective tuning space is two-dimensional, making it easy to depict it graphically.


=Quotes=
=Quotes=
Line 17: Line 17:
[[Gallery of projective tuning space images]]</pre></div>
[[Gallery of projective tuning space images]]</pre></div>
<h4>Original HTML content:</h4>
<h4>Original HTML content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;Projective tuning space&lt;/title&gt;&lt;/head&gt;&lt;body&gt;Projective tuning space is the &lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Projectiavization" rel="nofollow"&gt;projectivization&lt;/a&gt; of ordinary &lt;a class="wiki_link" href="/Vals%20and%20tuning%20space"&gt;tuning space&lt;/a&gt;. If a point in tuning space does not map octaves to zero, we can divide by the value to which &amp;quot;2&amp;quot; is mapped and obtain a pure-octaves tuning which serves to represent the point in projective tuning space. If the dimension of tuning space is n, the dimesion of the correponding projective space is n-1. In particullar, 5-limit projective tuning space is two-dimensional, making it easy to depict it graphically.&lt;br /&gt;
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;Projective tuning space&lt;/title&gt;&lt;/head&gt;&lt;body&gt;Projective tuning space is the &lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Projectiavization" rel="nofollow"&gt;projectivization&lt;/a&gt; of ordinary &lt;a class="wiki_link" href="/Vals%20and%20tuning%20space"&gt;tuning space&lt;/a&gt;. If a point in tuning space does not map octaves to zero, we can divide by the value to which &amp;quot;2&amp;quot; is mapped and obtain a pure-octaves tuning which serves to represent the point in projective tuning space. If the dimension of tuning space is n, the dimension of the corresponding projective space is n-1. In particular, 5-limit projective tuning space is two-dimensional, making it easy to depict it graphically.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc0"&gt;&lt;a name="Quotes"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt;Quotes&lt;/h1&gt;
&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc0"&gt;&lt;a name="Quotes"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt;Quotes&lt;/h1&gt;