POTE tuning: Difference between revisions

Wikispaces>xenwolf
**Imported revision 249325913 - Original comment: **
Wikispaces>genewardsmith
**Imported revision 350848958 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:xenwolf|xenwolf]] and made on <tt>2011-08-30 03:27:21 UTC</tt>.<br>
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2012-07-06 12:41:00 UTC</tt>.<br>
: The original revision id was <tt>249325913</tt>.<br>
: The original revision id was <tt>350848958</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
Line 26: Line 26:
POTE ~ &lt;1 0.3169600|
POTE ~ &lt;1 0.3169600|


The tuning of the POTE [[generator]] corresponding to the mapping M is therefore 0.31696 octaves, or 380.252 cents. Naturally, this only gives the single POTE generator in the rank two case, and only when the map M is in period-generator form, but the POTE tuning can still be found in this way for mappings defining higher rank temperaments. The method also, of course, should be modified if subgroup temperaments are being considered.
The tuning of the POTE [[generator]] corresponding to the mapping M is therefore 0.31696 octaves, or 380.252 cents. Naturally, this only gives the single POTE generator in the rank two case, and only when the map M is in period-generator form, but the POTE tuning can still be found in this way for mappings defining higher rank temperaments. The method can be generalized to subgroup temperaments so long as the group contains 2 by [[Lp tuning|POL2 tuning]].</pre></div>
</pre></div>
<h4>Original HTML content:</h4>
<h4>Original HTML content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;POTE tuning&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;strong&gt;POTE tuning&lt;/strong&gt; is the short form of &lt;strong&gt;Pure-Octaves &lt;a class="wiki_link" href="/Tenney-Euclidean%20tuning#Pure octaves TE tuning"&gt;Tenney-Euclidean tuning&lt;/a&gt;&lt;/strong&gt;, a good choice for a standard tuning enforcing just 2s as octaves.&lt;br /&gt;
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;POTE tuning&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;strong&gt;POTE tuning&lt;/strong&gt; is the short form of &lt;strong&gt;Pure-Octaves &lt;a class="wiki_link" href="/Tenney-Euclidean%20tuning#Pure octaves TE tuning"&gt;Tenney-Euclidean tuning&lt;/a&gt;&lt;/strong&gt;, a good choice for a standard tuning enforcing just 2s as octaves.&lt;br /&gt;
Line 49: Line 48:
POTE ~ &amp;lt;1 0.3169600|&lt;br /&gt;
POTE ~ &amp;lt;1 0.3169600|&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
The tuning of the POTE &lt;a class="wiki_link" href="/generator"&gt;generator&lt;/a&gt; corresponding to the mapping M is therefore 0.31696 octaves, or 380.252 cents. Naturally, this only gives the single POTE generator in the rank two case, and only when the map M is in period-generator form, but the POTE tuning can still be found in this way for mappings defining higher rank temperaments. The method also, of course, should be modified if subgroup temperaments are being considered.&lt;/body&gt;&lt;/html&gt;</pre></div>
The tuning of the POTE &lt;a class="wiki_link" href="/generator"&gt;generator&lt;/a&gt; corresponding to the mapping M is therefore 0.31696 octaves, or 380.252 cents. Naturally, this only gives the single POTE generator in the rank two case, and only when the map M is in period-generator form, but the POTE tuning can still be found in this way for mappings defining higher rank temperaments. The method can be generalized to subgroup temperaments so long as the group contains 2 by &lt;a class="wiki_link" href="/Lp%20tuning"&gt;POL2 tuning&lt;/a&gt;.&lt;/body&gt;&lt;/html&gt;</pre></div>