Rank-3 temperament: Difference between revisions

Wikispaces>genewardsmith
**Imported revision 141050747 - Original comment: **
 
Wikispaces>genewardsmith
**Imported revision 141051507 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2010-05-11 06:38:03 UTC</tt>.<br>
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2010-05-11 06:44:07 UTC</tt>.<br>
: The original revision id was <tt>141050747</tt>.<br>
: The original revision id was <tt>141051507</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
<h4>Original Wikitext content:</h4>
<h4>Original Wikitext content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">The octave-equivalent note classes of 7-limit harmony can be represented in vector (odd-only monzo) form as  
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">The octave-equivalent note classes of 7-limit harmony can be represented in vector (odd-only monzo) form as triples of integers (a b c). We can make this into a [[http://en.wikipedia.org/wiki/Lattice_%28group%29|lattice]]  
triples of integers (a b c). We can make this into a [[http://&lt;"http://en.wikipedia.org/wiki/Lattice"&gt;|lattice]]
by putting a [[http://en.wikipedia.org/wiki/Normed_vector_space|norm]]  on the three dimensional real we can regard them as living in. If we define  
by putting a &lt;A HREF="http://en.wikipedia.org/wiki/Normed_vector_space"&gt;norm&lt;/A&gt; on the three dimensional real  
&lt;A HREF="http://en.wikipedia.org/wiki/Vector_space"&gt;vector space&lt;/A&gt; we can regard them as living in. If we define  
the norm by
the norm by
|| (a b c) || = sqrt(a^2 + b^2 + c^2 + ab + ac + bc)
|| (a b c) || = sqrt(a^2 + b^2 + c^2 + ab + ac + bc)
Line 85: Line 83:
temperament.&lt;P ALIGN="CENTER"&gt;&lt;P ALIGN="CENTER"&gt;&lt;A HREF="home.htm"&gt;home&lt;/A&gt;&lt;/BODY&gt;&lt;/HTML&gt;</pre></div>
temperament.&lt;P ALIGN="CENTER"&gt;&lt;P ALIGN="CENTER"&gt;&lt;A HREF="home.htm"&gt;home&lt;/A&gt;&lt;/BODY&gt;&lt;/HTML&gt;</pre></div>
<h4>Original HTML content:</h4>
<h4>Original HTML content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;Planar Temperament&lt;/title&gt;&lt;/head&gt;&lt;body&gt;The octave-equivalent note classes of 7-limit harmony can be represented in vector (odd-only monzo) form as &lt;br /&gt;
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;Planar Temperament&lt;/title&gt;&lt;/head&gt;&lt;body&gt;The octave-equivalent note classes of 7-limit harmony can be represented in vector (odd-only monzo) form as triples of integers (a b c). We can make this into a &lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Lattice_%28group%29" rel="nofollow"&gt;lattice&lt;/a&gt;   &lt;br /&gt;
triples of integers (a b c). We can make this into a [[http://&amp;lt;&amp;quot;&lt;!-- ws:start:WikiTextUrlRule:77:http://en.wikipedia.org/wiki/Lattice --&gt;&lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Lattice" rel="nofollow"&gt;http://en.wikipedia.org/wiki/Lattice&lt;/a&gt;&lt;!-- ws:end:WikiTextUrlRule:77 --&gt;&amp;quot;&amp;gt;|lattice]]  &lt;br /&gt;
by putting a &lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Normed_vector_space" rel="nofollow"&gt;norm&lt;/a&gt; on the three dimensional real we can regard them as living in. If we define &lt;br /&gt;
by putting a &amp;lt;A HREF=&amp;quot;&lt;!-- ws:start:WikiTextUrlRule:78:http://en.wikipedia.org/wiki/Normed_vector_space --&gt;&lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Normed_vector_space" rel="nofollow"&gt;http://en.wikipedia.org/wiki/Normed_vector_space&lt;/a&gt;&lt;!-- ws:end:WikiTextUrlRule:78 --&gt;&amp;quot;&amp;gt;norm&amp;lt;/A&amp;gt; on the three dimensional real &lt;br /&gt;
&amp;lt;A HREF=&amp;quot;&lt;!-- ws:start:WikiTextUrlRule:79:http://en.wikipedia.org/wiki/Vector_space --&gt;&lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Vector_space" rel="nofollow"&gt;http://en.wikipedia.org/wiki/Vector_space&lt;/a&gt;&lt;!-- ws:end:WikiTextUrlRule:79 --&gt;&amp;quot;&amp;gt;vector space&amp;lt;/A&amp;gt; we can regard them as living in. If we define &lt;br /&gt;
the norm by&lt;br /&gt;
the norm by&lt;br /&gt;
|| (a b c) || = sqrt(a^2 + b^2 + c^2 + ab + ac + bc)&lt;br /&gt;
|| (a b c) || = sqrt(a^2 + b^2 + c^2 + ab + ac + bc)&lt;br /&gt;
then the twelve consonant intervals of 7-limit harmony are represented by the twelve lattice points +-(1 0 0), &lt;br /&gt;
then the twelve consonant intervals of 7-limit harmony are represented by the twelve lattice points +-(1 0 0), &lt;br /&gt;
+-(0 1 0), +-(0 0 1), +-(1 -1 0), +-(1 0 -1) and +-(0 1 -1) at a distance of one from the unison, (0 0 0). These &lt;br /&gt;
+-(0 1 0), +-(0 0 1), +-(1 -1 0), +-(1 0 -1) and +-(0 1 -1) at a distance of one from the unison, (0 0 0). These &lt;br /&gt;
lie on the verticies of a &amp;lt;A HREF=&amp;quot;&lt;!-- ws:start:WikiTextUrlRule:80:http://en.wikipedia.org/wiki/Cuboctahedron --&gt;&lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Cuboctahedron" rel="nofollow"&gt;http://en.wikipedia.org/wiki/Cuboctahedron&lt;/a&gt;&lt;!-- ws:end:WikiTextUrlRule:80 --&gt;&amp;quot;&amp;gt;cubeoctahedron&amp;lt;/A&amp;gt;, a semiregular &lt;br /&gt;
lie on the verticies of a &amp;lt;A HREF=&amp;quot;&lt;!-- ws:start:WikiTextUrlRule:77:http://en.wikipedia.org/wiki/Cuboctahedron --&gt;&lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Cuboctahedron" rel="nofollow"&gt;http://en.wikipedia.org/wiki/Cuboctahedron&lt;/a&gt;&lt;!-- ws:end:WikiTextUrlRule:77 --&gt;&amp;quot;&amp;gt;cubeoctahedron&amp;lt;/A&amp;gt;, a semiregular &lt;br /&gt;
solid. The lattice has two types of holes--the shallow holes, which are &amp;lt;A HREF=&amp;quot;&lt;!-- ws:start:WikiTextUrlRule:81:http://en.wikipedia.org/wiki/Tetrahedron --&gt;&lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Tetrahedron" rel="nofollow"&gt;http://en.wikipedia.org/wiki/Tetrahedron&lt;/a&gt;&lt;!-- ws:end:WikiTextUrlRule:81 --&gt;&amp;quot;&amp;gt;tetrahera&amp;lt;/A&amp;gt; &lt;br /&gt;
solid. The lattice has two types of holes--the shallow holes, which are &amp;lt;A HREF=&amp;quot;&lt;!-- ws:start:WikiTextUrlRule:78:http://en.wikipedia.org/wiki/Tetrahedron --&gt;&lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Tetrahedron" rel="nofollow"&gt;http://en.wikipedia.org/wiki/Tetrahedron&lt;/a&gt;&lt;!-- ws:end:WikiTextUrlRule:78 --&gt;&amp;quot;&amp;gt;tetrahera&amp;lt;/A&amp;gt; &lt;br /&gt;
and which correspond to the major and minor &amp;lt;A HREF=&amp;quot;&lt;!-- ws:start:WikiTextUrlRule:82:http://tonalsoft.com/enc/tetrad.htm --&gt;&lt;a class="wiki_link_ext" href="http://tonalsoft.com/enc/tetrad.htm" rel="nofollow"&gt;http://tonalsoft.com/enc/tetrad.htm&lt;/a&gt;&lt;!-- ws:end:WikiTextUrlRule:82 --&gt;&amp;quot;&amp;gt;tetrads&amp;lt;/A&amp;gt; 4:5:6:7 and &lt;br /&gt;
and which correspond to the major and minor &amp;lt;A HREF=&amp;quot;&lt;!-- ws:start:WikiTextUrlRule:79:http://tonalsoft.com/enc/tetrad.htm --&gt;&lt;a class="wiki_link_ext" href="http://tonalsoft.com/enc/tetrad.htm" rel="nofollow"&gt;http://tonalsoft.com/enc/tetrad.htm&lt;/a&gt;&lt;!-- ws:end:WikiTextUrlRule:79 --&gt;&amp;quot;&amp;gt;tetrads&amp;lt;/A&amp;gt; 4:5:6:7 and &lt;br /&gt;
1/4:1/5:1/6:1/7, and the deep holes which are &amp;lt;A HREF=&amp;quot;&lt;!-- ws:start:WikiTextUrlRule:83:http://en.wikipedia.org/wiki/Octahedron --&gt;&lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Octahedron" rel="nofollow"&gt;http://en.wikipedia.org/wiki/Octahedron&lt;/a&gt;&lt;!-- ws:end:WikiTextUrlRule:83 --&gt;&amp;quot;&amp;gt;octaheda&amp;lt;/A&amp;gt; and &lt;br /&gt;
1/4:1/5:1/6:1/7, and the deep holes which are &amp;lt;A HREF=&amp;quot;&lt;!-- ws:start:WikiTextUrlRule:80:http://en.wikipedia.org/wiki/Octahedron --&gt;&lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Octahedron" rel="nofollow"&gt;http://en.wikipedia.org/wiki/Octahedron&lt;/a&gt;&lt;!-- ws:end:WikiTextUrlRule:80 --&gt;&amp;quot;&amp;gt;octaheda&amp;lt;/A&amp;gt; and &lt;br /&gt;
correspond to &amp;lt;A HREF=&amp;quot;&lt;!-- ws:start:WikiTextUrlRule:84:http://tonalsoft.com/enc/hexany.htm --&gt;&lt;a class="wiki_link_ext" href="http://tonalsoft.com/enc/hexany.htm" rel="nofollow"&gt;http://tonalsoft.com/enc/hexany.htm&lt;/a&gt;&lt;!-- ws:end:WikiTextUrlRule:84 --&gt;&amp;quot;&amp;gt;hexanies&amp;lt;/A&amp;gt;.&lt;br /&gt;
correspond to &amp;lt;A HREF=&amp;quot;&lt;!-- ws:start:WikiTextUrlRule:81:http://tonalsoft.com/enc/hexany.htm --&gt;&lt;a class="wiki_link_ext" href="http://tonalsoft.com/enc/hexany.htm" rel="nofollow"&gt;http://tonalsoft.com/enc/hexany.htm&lt;/a&gt;&lt;!-- ws:end:WikiTextUrlRule:81 --&gt;&amp;quot;&amp;gt;hexanies&amp;lt;/A&amp;gt;.&lt;br /&gt;
A similar lattice may be defined in any p-limit, by using a norm which is the square root of the quadratic form &lt;br /&gt;
A similar lattice may be defined in any p-limit, by using a norm which is the square root of the quadratic form &lt;br /&gt;
x_i x_j, summed over all i &amp;lt;= j; moreover as an alternative approach we can use the &amp;lt;A HREF=&amp;quot;hahn.htm&amp;quot;&amp;gt;Hahn &lt;br /&gt;
x_i x_j, summed over all i &amp;lt;= j; moreover as an alternative approach we can use the &amp;lt;A HREF=&amp;quot;hahn.htm&amp;quot;&amp;gt;Hahn &lt;br /&gt;
Line 104: Line 100:
to a given lattice point than any other, are hexagons.) The higher dimensional versions of this are called An, &lt;br /&gt;
to a given lattice point than any other, are hexagons.) The higher dimensional versions of this are called An, &lt;br /&gt;
in n dimensions, so the 7-limit lattice is the A3 lattice. However, the 7-limit is unique in that there is another &lt;br /&gt;
in n dimensions, so the 7-limit lattice is the A3 lattice. However, the 7-limit is unique in that there is another &lt;br /&gt;
family of lattices, called Dn, to which it also belongs as D3, the&amp;lt;A HREF=&amp;quot;&lt;!-- ws:start:WikiTextUrlRule:85:http://en.wikipedia.org/wiki/Crystal_structure --&gt;&lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Crystal_structure" rel="nofollow"&gt;http://en.wikipedia.org/wiki/Crystal_structure&lt;/a&gt;&lt;!-- ws:end:WikiTextUrlRule:85 --&gt;&amp;quot;&amp;gt;face-centered &lt;br /&gt;
family of lattices, called Dn, to which it also belongs as D3, the&amp;lt;A HREF=&amp;quot;&lt;!-- ws:start:WikiTextUrlRule:82:http://en.wikipedia.org/wiki/Crystal_structure --&gt;&lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Crystal_structure" rel="nofollow"&gt;http://en.wikipedia.org/wiki/Crystal_structure&lt;/a&gt;&lt;!-- ws:end:WikiTextUrlRule:82 --&gt;&amp;quot;&amp;gt;face-centered &lt;br /&gt;
cubic lattice&amp;lt;/A&amp;gt;. If we take (b+c)^2+(a+c)^2+(a+b)^2 and expand it, we get 2 (a^2 + b^2 + c^2 + ab + ac + bc). &lt;br /&gt;
cubic lattice&amp;lt;/A&amp;gt;. If we take (b+c)^2+(a+c)^2+(a+b)^2 and expand it, we get 2 (a^2 + b^2 + c^2 + ab + ac + bc). &lt;br /&gt;
If we therefore take our triples (a b c) and change basis by sending (1 0 0) to (0 1 1), (0 1 0) to (1 0 1), and &lt;br /&gt;
If we therefore take our triples (a b c) and change basis by sending (1 0 0) to (0 1 1), (0 1 0) to (1 0 1), and &lt;br /&gt;
Line 121: Line 117:
If [a b c] is any triple of integers, then it represents the major tetrad with root 3^((-a+b+c)/2) 5^((a-b+c)/2) &lt;br /&gt;
If [a b c] is any triple of integers, then it represents the major tetrad with root 3^((-a+b+c)/2) 5^((a-b+c)/2) &lt;br /&gt;
7^((a+c-c)/2) if a+b+c is even, and the minor tetrad with root 3^((-1-a+b+c)/2) 5^((1+a-b+c)/2 7^((1+a+b-c)/2) &lt;br /&gt;
7^((a+c-c)/2) if a+b+c is even, and the minor tetrad with root 3^((-1-a+b+c)/2) 5^((1+a-b+c)/2 7^((1+a+b-c)/2) &lt;br /&gt;
if a+b+c is odd. Each unit cube corresponds to a &amp;lt;A HREF=&amp;quot;&lt;!-- ws:start:WikiTextUrlRule:86:http://tonalsoft.com/enc/stellat.htm --&gt;&lt;a class="wiki_link_ext" href="http://tonalsoft.com/enc/stellat.htm" rel="nofollow"&gt;http://tonalsoft.com/enc/stellat.htm&lt;/a&gt;&lt;!-- ws:end:WikiTextUrlRule:86 --&gt;&amp;quot;&amp;gt;stellated hexany&amp;lt;/A&amp;gt;, &lt;br /&gt;
if a+b+c is odd. Each unit cube corresponds to a &amp;lt;A HREF=&amp;quot;&lt;!-- ws:start:WikiTextUrlRule:83:http://tonalsoft.com/enc/stellat.htm --&gt;&lt;a class="wiki_link_ext" href="http://tonalsoft.com/enc/stellat.htm" rel="nofollow"&gt;http://tonalsoft.com/enc/stellat.htm&lt;/a&gt;&lt;!-- ws:end:WikiTextUrlRule:83 --&gt;&amp;quot;&amp;gt;stellated hexany&amp;lt;/A&amp;gt;, &lt;br /&gt;
or tetradekany, or dekatesserany, though chord cube would be less of a mouthful.&lt;br /&gt;
or tetradekany, or dekatesserany, though chord cube would be less of a mouthful.&lt;br /&gt;
If we look at twice the generators, namely [2 0 0], [0 2 0] and [0 0 2] we find they correspond to transposition &lt;br /&gt;
If we look at twice the generators, namely [2 0 0], [0 2 0] and [0 0 2] we find they correspond to transposition &lt;br /&gt;
Line 128: Line 124:
relations because of this.&lt;br /&gt;
relations because of this.&lt;br /&gt;
In any limit, we may consider the dual lattice of mappings to primes, or octave-equivalent vals. Dual to the &lt;br /&gt;
In any limit, we may consider the dual lattice of mappings to primes, or octave-equivalent vals. Dual to the &lt;br /&gt;
An norm defined from x_j x_j is a norm defined by the inverse to the symmetric matrix of the &amp;lt;A HREF=&amp;quot;&lt;!-- ws:start:WikiTextUrlRule:87:http://en.wikipedia.org/wiki/Quadratic_form --&gt;&lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Quadratic_form" rel="nofollow"&gt;http://en.wikipedia.org/wiki/Quadratic_form&lt;/a&gt;&lt;!-- ws:end:WikiTextUrlRule:87 --&gt;&amp;quot;&amp;gt;quadratic &lt;br /&gt;
An norm defined from x_j x_j is a norm defined by the inverse to the symmetric matrix of the &amp;lt;A HREF=&amp;quot;&lt;!-- ws:start:WikiTextUrlRule:84:http://en.wikipedia.org/wiki/Quadratic_form --&gt;&lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Quadratic_form" rel="nofollow"&gt;http://en.wikipedia.org/wiki/Quadratic_form&lt;/a&gt;&lt;!-- ws:end:WikiTextUrlRule:84 --&gt;&amp;quot;&amp;gt;quadratic &lt;br /&gt;
form&amp;lt;/A&amp;gt; for the An norm, which normalizes to the square root of the quantity n times the sum of squares of x_i &lt;br /&gt;
form&amp;lt;/A&amp;gt; for the An norm, which normalizes to the square root of the quantity n times the sum of squares of x_i &lt;br /&gt;
minus twice the product x_i x_j, for j &amp;gt; i. This defines the dual lattice An* to An. In the two dimensions of &lt;br /&gt;
minus twice the product x_i x_j, for j &amp;gt; i. This defines the dual lattice An* to An. In the two dimensions of &lt;br /&gt;
Line 137: Line 133:
becomes the usual Euclidean norm. If we take linear combinations with integer coefficents of these, we obtain all &lt;br /&gt;
becomes the usual Euclidean norm. If we take linear combinations with integer coefficents of these, we obtain all &lt;br /&gt;
triples of integers which are either all even or all odd. The lattice with these points and the usual Euclidean &lt;br /&gt;
triples of integers which are either all even or all odd. The lattice with these points and the usual Euclidean &lt;br /&gt;
norm is the &amp;lt;A HREF=&amp;quot;&lt;!-- ws:start:WikiTextUrlRule:88:http://en.wikipedia.org/wiki/Crystal_structure --&gt;&lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Crystal_structure" rel="nofollow"&gt;http://en.wikipedia.org/wiki/Crystal_structure&lt;/a&gt;&lt;!-- ws:end:WikiTextUrlRule:88 --&gt;&amp;quot;&amp;gt;body-centered cubic lattice&amp;lt;/A&amp;gt;.&lt;br /&gt;
norm is the &amp;lt;A HREF=&amp;quot;&lt;!-- ws:start:WikiTextUrlRule:85:http://en.wikipedia.org/wiki/Crystal_structure --&gt;&lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Crystal_structure" rel="nofollow"&gt;http://en.wikipedia.org/wiki/Crystal_structure&lt;/a&gt;&lt;!-- ws:end:WikiTextUrlRule:85 --&gt;&amp;quot;&amp;gt;body-centered cubic lattice&amp;lt;/A&amp;gt;.&lt;br /&gt;
It is easy to verify that the dot product of a triple of integers, either all even or all odd, times a triple &lt;br /&gt;
It is easy to verify that the dot product of a triple of integers, either all even or all odd, times a triple &lt;br /&gt;
of integers whose sum is even, is always even; and we get the precise relationship between mappings and note-classes &lt;br /&gt;
of integers whose sum is even, is always even; and we get the precise relationship between mappings and note-classes &lt;br /&gt;
Line 154: Line 150:
to itself, and the body-centered cubic lattice of mappings of note-classes to itself. The first two types of transformation &lt;br /&gt;
to itself, and the body-centered cubic lattice of mappings of note-classes to itself. The first two types of transformation &lt;br /&gt;
includes the major/minor transformation, and can be regarded as a vast generalization of that. Robert Walker has &lt;br /&gt;
includes the major/minor transformation, and can be regarded as a vast generalization of that. Robert Walker has &lt;br /&gt;
a piece, &amp;lt;A HREF=&amp;quot;&lt;!-- ws:start:WikiTextUrlRule:89:http://tunesmithy.netfirms.com/tunes/tunes.htm#hexany_phrase --&gt;&lt;a class="wiki_link_ext" href="http://tunesmithy.netfirms.com/tunes/tunes.htm#hexany_phrase" rel="nofollow"&gt;http://tunesmithy.netfirms.com/tunes/tunes.htm#hexany_phrase&lt;/a&gt;&lt;!-- ws:end:WikiTextUrlRule:89 --&gt;&amp;quot;&amp;gt;Hexany Phrase&amp;lt;/A&amp;gt;, which takes &lt;br /&gt;
a piece, &amp;lt;A HREF=&amp;quot;&lt;!-- ws:start:WikiTextUrlRule:86:http://tunesmithy.netfirms.com/tunes/tunes.htm#hexany_phrase --&gt;&lt;a class="wiki_link_ext" href="http://tunesmithy.netfirms.com/tunes/tunes.htm#hexany_phrase" rel="nofollow"&gt;http://tunesmithy.netfirms.com/tunes/tunes.htm#hexany_phrase&lt;/a&gt;&lt;!-- ws:end:WikiTextUrlRule:86 --&gt;&amp;quot;&amp;gt;Hexany Phrase&amp;lt;/A&amp;gt;, which takes &lt;br /&gt;
a theme through all 48 resulting variations.&lt;br /&gt;
a theme through all 48 resulting variations.&lt;br /&gt;
Transforming maps to maps when they are generator maps for two temperaments with the same period is sometimes &lt;br /&gt;
Transforming maps to maps when they are generator maps for two temperaments with the same period is sometimes &lt;br /&gt;