Pergen names: Difference between revisions

Wikispaces>TallKite
**Imported revision 621999693 - Original comment: **
Wikispaces>TallKite
**Imported revision 622022613 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:TallKite|TallKite]] and made on <tt>2017-11-20 04:57:28 UTC</tt>.<br>
: This revision was by author [[User:TallKite|TallKite]] and made on <tt>2017-11-20 09:53:37 UTC</tt>.<br>
: The original revision id was <tt>621999693</tt>.<br>
: The original revision id was <tt>622022613</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
Line 105: Line 105:
Analogous to 22-edo, sometimes additional accidentals aren't needed, but are desirable, to avoid misspelled chords. For example, schismic is fifth-based and can be notated conventionally. But this causes 4:5:6 to be spelled as C Fb G. With ^1 = 81/80, the chord can be spelled C Ev G.
Analogous to 22-edo, sometimes additional accidentals aren't needed, but are desirable, to avoid misspelled chords. For example, schismic is fifth-based and can be notated conventionally. But this causes 4:5:6 to be spelled as C Fb G. With ^1 = 81/80, the chord can be spelled C Ev G.


Not all possible combinations of periods and generators are unique pergens. {P8, WWP5/2} is actually {P8, P5/2}. {P8/2, P5/2} is actually {P8/2, P4/2}. There is no {P8, M2/2}, and {P8/2, M2/2} is actually {P8/2, P5}.  
Not all possible combinations of periods and generators are unique pergens. {P8/2, P5/2} is actually {P8/2, P4/2}. There is no {P8, M2/2}, and {P8/2, M2/2} is actually {P8/2, P5}.  


This table lists all unique rank-2 pergens, assuming primes 2 and 3, grouped by the size of the larger splitting factor.
This table lists all unique rank-2 pergens, assuming primes 2 and 3, grouped by the size of the larger splitting factor.
Line 111: Line 111:
The genchain shown is a short section of the full genchain. C - G implies ...Eb Bb F C G D A E B F# C#... And C - Eb^=Ev - G implies ...F - Ab^=Av - C - Eb^=Ev - G - Bb^=Bv - D - F^=F#v - A - C^=C#v - E... If the octave is split, the genchain shows the octave: In C - F#v=Gb^ - C, the last C is an octave above the first one.
The genchain shown is a short section of the full genchain. C - G implies ...Eb Bb F C G D A E B F# C#... And C - Eb^=Ev - G implies ...F - Ab^=Av - C - Eb^=Ev - G - Bb^=Bv - D - F^=F#v - A - C^=C#v - E... If the octave is split, the genchain shows the octave: In C - F#v=Gb^ - C, the last C is an octave above the first one.


An edo is incompatible with a pergen if the split is impossible. For example, all odd-numbered edos are incompatible with half-octave pergens. An edo is somewhat incompatible with a pergen if the period and generator can only generate a subset of the edo. For example, 15-edo is somewhat incompatible with {P8, P5}, because any chain-of-5ths scale would translate to a 5-edo subset. Such edos are marked with asterisks. 13b is incompatible with {P8, P5/2}, but 13 isn't. However, 13 is incompatible with heptatonic notation.
An edo is incompatible with a pergen if the split is impossible. For example, all odd-numbered edos are incompatible with half-octave pergens. An edo is somewhat incompatible with a pergen if the period and generator can only generate a subset of the edo. For example, 15-edo is somewhat incompatible with {P8, P5}, because any chain-of-5ths scale could only make a 5-edo subset. Such edos are marked with asterisks. 13b is incompatible with {P8, P5/2}, but 13 isn't. However, 13 is incompatible with heptatonic notation.


(table is under construction)
(table is under construction)
Line 169: Line 169:
/1 = j1 = 33/32 ||= " ||
/1 = j1 = 33/32 ||= " ||
||~ thirds ||~  ||~  ||~  ||~  ||~  ||~  ||
||~ thirds ||~  ||~  ||~  ||~  ||~  ||~  ||
||= {P8/3, P5} ||=  ||=   ||=   ||=   ||=  ||= 12, 15, 18b*, 21, 24*,  
||= {P8/3, P5} ||=  ||= P8/3 = vM3 = ^^d4
(^/v may reverse) ||= ^&lt;span style="vertical-align: super;"&gt;3&lt;/span&gt;d2 ||= &lt;span style="font-family: Arial,Helvetica,sans-serif;"&gt;C - Ev - Ab^ - C&lt;/span&gt; ||=  ||= 12, 15, 18b*, 21, 24*,  
27, 30* ||
27, 30* ||
||= {P8, P4/3} ||=  ||=   ||=   ||=   ||=  ||= 13b, 14*, 15, 21*,
||= {P8, P4/3} ||=  ||= P4/3 = ^^m2 = vM2 ||= v&lt;span style="vertical-align: super;"&gt;3&lt;/span&gt;A1 ||= C - Dv - Eb^ - F ||=  ||= 13b, 14*, 15, 21*,
22, 28*, 29, 30* ||
22, 28*, 29, 30* ||
||= {P8, P5/3} ||=  ||=   ||=   ||=   ||=  ||= 15*, 16, 20*, 21,
||= {P8, P5/3} ||=  ||= P5/3 = ^M2 = vvm3 ||= v&lt;span style="vertical-align: super;"&gt;3&lt;/span&gt;m2 ||= C - D^ - Fv - G ||=  ||= 15*, 16, 20*, 21,
25*, 26, 30*, 31 ||
25*, 26, 30*, 31 ||
||= {P8, P11/3} ||=  ||=   ||=   ||=   ||=  ||= same as {P8, P4/3} ||
||= {P8, P11/3} ||=  ||= P11/3 = vA4 = ^^dd5 ||= ^&lt;span style="vertical-align: super;"&gt;3&lt;/span&gt;dd2 ||= C - F#v - Cb^ - F ||=  ||= same as {P8, P4/3} ||
||= " ||=  ||= P11/3 = ^P4 = vvP5 ||= v&lt;span style="vertical-align: super;"&gt;3&lt;/span&gt;M2 ||= C F^ Cv F ||=  ||=  ||
||= {P8/3, P4/2} ||=  ||=  ||=  ||=  ||=  ||= 15, 18b*, 24, 30 ||
||= {P8/3, P4/2} ||=  ||=  ||=  ||=  ||=  ||= 15, 18b*, 24, 30 ||
||= {P8/3, P5/2} ||=  ||=  ||=  ||=  ||=  ||= 18b, 24, 30 ||
||= {P8/3, P5/2} ||=  ||=  ||=  ||=  ||=  ||= 18b, 24, 30 ||
Line 183: Line 185:
||= {P8/3, P4/3} ||=  ||=  ||=  ||=  ||=  ||= 15, 21, 30* ||
||= {P8/3, P4/3} ||=  ||=  ||=  ||=  ||=  ||= 15, 21, 30* ||
||~ quarters ||~  ||~  ||~  ||~  ||~  ||~  ||
||~ quarters ||~  ||~  ||~  ||~  ||~  ||~  ||
||= {P8/4, P5} ||=  ||=   ||=   ||=   ||=  ||= 12, 16, 20, 24*, 28 ||
||= {P8/4, P5} ||=  ||= P8/4 = vm3 = ^&lt;span style="vertical-align: super;"&gt;3&lt;/span&gt;d2
||= {P8, P4/4} ||=  ||=   ||=   ||=   ||=  ||=  ||
(^/v may reverse) ||= v&lt;span style="vertical-align: super;"&gt;4&lt;/span&gt;d2 ||= C Ebv Gbbvv A^ C ||=  ||= 12, 16, 20, 24*, 28 ||
||= {P8, P5/4} ||=  ||=   ||=   ||||=  ||=  ||
||= {P8, P4/4} ||=  ||= P4/4 = ^m2 = v&lt;span style="vertical-align: super;"&gt;3&lt;/span&gt;AA1 ||= ^&lt;span style="vertical-align: super;"&gt;4&lt;/span&gt;dd2 ||= C Db^ Ebb^^ Ev F ||=  ||=  ||
||= {P8, P5/4} ||=  ||= P5/4 = vM2 = ^&lt;span style="vertical-align: super;"&gt;3&lt;/span&gt;m2 ||= v&lt;span style="vertical-align: super;"&gt;4&lt;/span&gt;A1 || C Dv Evv F^ G^ ||=  ||=  ||
||= {P8, P11/4} ||=  ||=  ||=  ||=  ||=  ||=  ||
||= {P8, P11/4} ||=  ||=  ||=  ||=  ||=  ||=  ||
||= {P8, P12/4} ||=  ||=  ||=  ||=  ||=  ||=  ||
||= {P8, P12/4} ||=  ||=  ||=  ||=  ||=  ||=  ||
Line 192: Line 195:
||= {P8/2, P5/4} ||=  ||=  ||=  ||=  ||=  ||=  ||
||= {P8/2, P5/4} ||=  ||=  ||=  ||=  ||=  ||=  ||
||=  ||=  ||=  ||=  ||=  ||=  ||=  ||
||=  ||=  ||=  ||=  ||=  ||=  ||=  ||
||=   ||=  ||=  ||=  ||=  ||=  ||=  ||
||= etc. ||=  ||=  ||=  ||=  ||=  ||=  ||
||=  ||=  ||=  ||=  ||=  ||=  ||=  ||
||=  ||=  ||=  ||=  ||=  ||=  ||=  ||
||=  ||=  ||=  ||=  ||=  ||=  ||=  ||
||=  ||=  ||=  ||=  ||=  ||=  ||=  ||
Line 717: Line 720:
Analogous to 22-edo, sometimes additional accidentals aren't needed, but are desirable, to avoid misspelled chords. For example, schismic is fifth-based and can be notated conventionally. But this causes 4:5:6 to be spelled as C Fb G. With ^1 = 81/80, the chord can be spelled C Ev G.&lt;br /&gt;
Analogous to 22-edo, sometimes additional accidentals aren't needed, but are desirable, to avoid misspelled chords. For example, schismic is fifth-based and can be notated conventionally. But this causes 4:5:6 to be spelled as C Fb G. With ^1 = 81/80, the chord can be spelled C Ev G.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
Not all possible combinations of periods and generators are unique pergens. {P8, WWP5/2} is actually {P8, P5/2}. {P8/2, P5/2} is actually {P8/2, P4/2}. There is no {P8, M2/2}, and {P8/2, M2/2} is actually {P8/2, P5}. &lt;br /&gt;
Not all possible combinations of periods and generators are unique pergens. {P8/2, P5/2} is actually {P8/2, P4/2}. There is no {P8, M2/2}, and {P8/2, M2/2} is actually {P8/2, P5}. &lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
This table lists all unique rank-2 pergens, assuming primes 2 and 3, grouped by the size of the larger splitting factor.&lt;br /&gt;
This table lists all unique rank-2 pergens, assuming primes 2 and 3, grouped by the size of the larger splitting factor.&lt;br /&gt;
Line 723: Line 726:
The genchain shown is a short section of the full genchain. C - G implies ...Eb Bb F C G D A E B F# C#... And C - Eb^=Ev - G implies ...F - Ab^=Av - C - Eb^=Ev - G - Bb^=Bv - D - F^=F#v - A - C^=C#v - E... If the octave is split, the genchain shows the octave: In C - F#v=Gb^ - C, the last C is an octave above the first one.&lt;br /&gt;
The genchain shown is a short section of the full genchain. C - G implies ...Eb Bb F C G D A E B F# C#... And C - Eb^=Ev - G implies ...F - Ab^=Av - C - Eb^=Ev - G - Bb^=Bv - D - F^=F#v - A - C^=C#v - E... If the octave is split, the genchain shows the octave: In C - F#v=Gb^ - C, the last C is an octave above the first one.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
An edo is incompatible with a pergen if the split is impossible. For example, all odd-numbered edos are incompatible with half-octave pergens. An edo is somewhat incompatible with a pergen if the period and generator can only generate a subset of the edo. For example, 15-edo is somewhat incompatible with {P8, P5}, because any chain-of-5ths scale would translate to a 5-edo subset. Such edos are marked with asterisks. 13b is incompatible with {P8, P5/2}, but 13 isn't. However, 13 is incompatible with heptatonic notation.&lt;br /&gt;
An edo is incompatible with a pergen if the split is impossible. For example, all odd-numbered edos are incompatible with half-octave pergens. An edo is somewhat incompatible with a pergen if the period and generator can only generate a subset of the edo. For example, 15-edo is somewhat incompatible with {P8, P5}, because any chain-of-5ths scale could only make a 5-edo subset. Such edos are marked with asterisks. 13b is incompatible with {P8, P5/2}, but 13 isn't. However, 13 is incompatible with heptatonic notation.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
(table is under construction)&lt;br /&gt;
(table is under construction)&lt;br /&gt;
Line 1,014: Line 1,017:
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;P8/3 = vM3 = ^^d4&lt;br /&gt;
(^/v may reverse)&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;^&lt;span style="vertical-align: super;"&gt;3&lt;/span&gt;d2&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;&lt;span style="font-family: Arial,Helvetica,sans-serif;"&gt;C - Ev - Ab^ - C&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
Line 1,031: Line 1,035:
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;P4/3 = ^^m2 = vM2&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;v&lt;span style="vertical-align: super;"&gt;3&lt;/span&gt;A1&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;C - Dv - Eb^ - F&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
Line 1,048: Line 1,052:
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;P5/3 = ^M2 = vvm3&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;v&lt;span style="vertical-align: super;"&gt;3&lt;/span&gt;m2&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;C - D^ - Fv - G&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
Line 1,064: Line 1,068:
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;P11/3 = vA4 = ^^dd5&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;^&lt;span style="vertical-align: super;"&gt;3&lt;/span&gt;dd2&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;C - F#v - Cb^ - F&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;same as {P8, P4/3}&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;&amp;quot;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;P11/3 = ^P4 = vvP5&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;v&lt;span style="vertical-align: super;"&gt;3&lt;/span&gt;M2&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;C F^ Cv F&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;same as {P8, P4/3}&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 1,193: Line 1,213:
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;P8/4 = vm3 = ^&lt;span style="vertical-align: super;"&gt;3&lt;/span&gt;d2&lt;br /&gt;
(^/v may reverse)&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;v&lt;span style="vertical-align: super;"&gt;4&lt;/span&gt;d2&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;C Ebv Gbbvv A^ C&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
Line 1,209: Line 1,230:
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;P4/4 = ^m2 = v&lt;span style="vertical-align: super;"&gt;3&lt;/span&gt;AA1&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;^&lt;span style="vertical-align: super;"&gt;4&lt;/span&gt;dd2&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;C Db^ Ebb^^ Ev F&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
Line 1,225: Line 1,246:
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;P5/4 = vM2 = ^&lt;span style="vertical-align: super;"&gt;3&lt;/span&gt;m2&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;v&lt;span style="vertical-align: super;"&gt;4&lt;/span&gt;A1&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
         &lt;td&gt;C Dv Evv F^ G^&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
Line 1,333: Line 1,354:
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;etc.&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;