Pergen names: Difference between revisions

Wikispaces>TallKite
**Imported revision 624380271 - Original comment: **
Wikispaces>TallKite
**Imported revision 624380857 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:TallKite|TallKite]] and made on <tt>2018-01-03 02:28:57 UTC</tt>.<br>
: This revision was by author [[User:TallKite|TallKite]] and made on <tt>2018-01-03 03:25:39 UTC</tt>.<br>
: The original revision id was <tt>624380271</tt>.<br>
: The original revision id was <tt>624380857</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
Line 29: Line 29:
||= (P8, P5) ||= unsplit ||= 81/80 ||= meantone ||= green ||= gT ||
||= (P8, P5) ||= unsplit ||= 81/80 ||= meantone ||= green ||= gT ||
||= " ||= " ||= 64/63 ||= archy ||= red ||= rT ||
||= " ||= " ||= 64/63 ||= archy ||= red ||= rT ||
||= " ||= " ||= (-14,8,0,0,1) ||= schismic ||= large yellow ||= LyT ||
||= " ||= " ||= (-14,8,1) ||= schismic ||= large yellow ||= LyT ||
||= " ||= " ||= 81/80, 126/125 ||= septimal meantone ||= green and bluish deep green ||= g&amp;bg&lt;span style="vertical-align: super;"&gt;3&lt;/span&gt;T ||
||= (P8/2, P5) ||= half-octave ||= (11, -4, -2) ||= srutal ||= small deep green ||= sggT ||
||= (P8/2, P5) ||= half-octave ||= (11, -4, -2) ||= srutal ||= small deep green ||= sggT ||
||= " ||= " ||= 81/80, 50/49 ||= injera ||= deep reddish and green ||= rryy&amp;gT ||
||= " ||= " ||= 81/80, 50/49 ||= injera ||= deep reddish and green ||= rryy&amp;gT ||
Line 369: Line 368:
==Alternate enharmonics==  
==Alternate enharmonics==  


Sometimes the enharmonic found by rounding off the gedra can be greatly improved by rounding off differently. For example, (P8/3, P4/4) unreduces to (P8/3, WWM6/12), a false double. The bare alternate generator is WWM6/12 = [33,19]/12 = [3,2] = m3. The bare enharmonic is [33,19] - 12*[3,2] = [-3,-5] = a quintuple-diminished 6th! This would make for a very confusing notation. However, [33,19]/12 can be rounded off to [4,2] = M3. The enharmonic becomes [33,19] - 12*[4,2] = [-15,-5] = -5*[3,1] = 5 * v&lt;span style="vertical-align: super;"&gt;12&lt;/span&gt;A2, which is an improvement but still awkward. The period is ^&lt;span style="vertical-align: super;"&gt;4&lt;/span&gt;m3 and the generator is v&lt;span style="vertical-align: super;"&gt;3&lt;/span&gt;M2.
Sometimes the enharmonic found by rounding off the gedra can be greatly improved by rounding off differently. For example, (P8/3, P4/4) unreduces to (P8/3, WWM6/12), a false double. The bare alternate generator is WWM6/12 = [33,19]/12 = [3,2] = m3. The bare enharmonic is [33,19] - 12*[3,2] = [-3,-5] = a quintuple-diminished 6th! This would make for a very confusing notation. However, [33,19]/12 can be rounded way up to [4,2] = M3. The enharmonic becomes [33,19] - 12*[4,2] = [-15,-5] = -5*[3,1] = -5 * v&lt;span style="vertical-align: super;"&gt;12&lt;/span&gt;A2, which is an improvement but still awkward. The period is ^&lt;span style="vertical-align: super;"&gt;4&lt;/span&gt;m3 and the generator is v&lt;span style="vertical-align: super;"&gt;3&lt;/span&gt;M2.
&lt;span style="display: block; text-align: center;"&gt;
&lt;span style="display: block; text-align: center;"&gt; P1 -- ^&lt;span style="vertical-align: super;"&gt;4&lt;/span&gt;m3 -- v&lt;span style="vertical-align: super;"&gt;4&lt;/span&gt;M6 -- C
P1 -- ^&lt;span style="vertical-align: super;"&gt;4&lt;/span&gt;m3 -- v&lt;span style="vertical-align: super;"&gt;4&lt;/span&gt;M6 -- C
C -- Eb^&lt;span style="vertical-align: super;"&gt;4&lt;/span&gt; -- Av&lt;span style="vertical-align: super;"&gt;4&lt;/span&gt; -- C
C -- Eb^&lt;span style="vertical-align: super;"&gt;4&lt;/span&gt; -- Av&lt;span style="vertical-align: super;"&gt;4&lt;/span&gt; -- C
P1 -- v&lt;span style="vertical-align: super;"&gt;3&lt;/span&gt;M2 -- v&lt;span style="vertical-align: super;"&gt;6&lt;/span&gt;M3=^&lt;span style="vertical-align: super;"&gt;6&lt;/span&gt;m2 -- ^&lt;span style="vertical-align: super;"&gt;3&lt;/span&gt;m3 -- P4
P1 -- v&lt;span style="vertical-align: super;"&gt;3&lt;/span&gt;M2 -- v&lt;span style="vertical-align: super;"&gt;6&lt;/span&gt;M3=^&lt;span style="vertical-align: super;"&gt;6&lt;/span&gt;m2 -- ^&lt;span style="vertical-align: super;"&gt;3&lt;/span&gt;m3 -- P4
Line 380: Line 378:
&lt;/span&gt;&lt;span style="display: block; text-align: center;"&gt;C -- Ev -- Ab^ -- C
&lt;/span&gt;&lt;span style="display: block; text-align: center;"&gt;C -- Ev -- Ab^ -- C
&lt;/span&gt;&lt;span style="display: block; text-align: center;"&gt;P1 -- /m2 -- ``//``d3=\\A2 -- \M3 -- P4
&lt;/span&gt;&lt;span style="display: block; text-align: center;"&gt;P1 -- /m2 -- ``//``d3=\\A2 -- \M3 -- P4
&lt;/span&gt;&lt;span style="display: block; text-align: center;"&gt;C -- Db/ -- Ebb``//``=D#\\ -- E\ -- F&lt;/span&gt;&lt;span style="display: block; text-align: center;"&gt;
&lt;/span&gt;&lt;span style="display: block; text-align: center;"&gt;C -- Db/ -- Ebb``//``=D#\\ -- E\ -- F&lt;/span&gt;
&lt;/span&gt;
Sometimes the temperament being notated implies a certain enharmonic. Specifically, the comma tempered out should map to the enharmonic, or some multiple of it.
 
 
The comma equals xE and/or yE'.
The comma equals xE and/or yE'.
If M' = [a,b], then G' = [round(a/n'), round(b/n')] makes the smallest zE", but not always the smallest E"
If M' = [a,b], then G' = [round(a/n'), round(b/n')] makes the smallest zE", but not always the smallest E"
Line 563: Line 563:
         &lt;td style="text-align: center;"&gt;&amp;quot;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;&amp;quot;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;(-14,8,0,0,1)&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;(-14,8,1)&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;schismic&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;schismic&lt;br /&gt;
Line 570: Line 570:
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;LyT&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;LyT&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;&amp;quot;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&amp;quot;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;81/80, 126/125&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;septimal meantone&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;green and bluish deep green&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;g&amp;amp;bg&lt;span style="vertical-align: super;"&gt;3&lt;/span&gt;T&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 2,169: Line 2,155:
&lt;!-- ws:start:WikiTextHeadingRule:49:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc9"&gt;&lt;a name="Further Discussion-Alternate enharmonics"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:49 --&gt;Alternate enharmonics&lt;/h2&gt;
&lt;!-- ws:start:WikiTextHeadingRule:49:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc9"&gt;&lt;a name="Further Discussion-Alternate enharmonics"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:49 --&gt;Alternate enharmonics&lt;/h2&gt;
  &lt;br /&gt;
  &lt;br /&gt;
Sometimes the enharmonic found by rounding off the gedra can be greatly improved by rounding off differently. For example, (P8/3, P4/4) unreduces to (P8/3, WWM6/12), a false double. The bare alternate generator is WWM6/12 = [33,19]/12 = [3,2] = m3. The bare enharmonic is [33,19] - 12*[3,2] = [-3,-5] = a quintuple-diminished 6th! This would make for a very confusing notation. However, [33,19]/12 can be rounded off to [4,2] = M3. The enharmonic becomes [33,19] - 12*[4,2] = [-15,-5] = -5*[3,1] = 5 * v&lt;span style="vertical-align: super;"&gt;12&lt;/span&gt;A2, which is an improvement but still awkward. The period is ^&lt;span style="vertical-align: super;"&gt;4&lt;/span&gt;m3 and the generator is v&lt;span style="vertical-align: super;"&gt;3&lt;/span&gt;M2.&lt;br /&gt;
Sometimes the enharmonic found by rounding off the gedra can be greatly improved by rounding off differently. For example, (P8/3, P4/4) unreduces to (P8/3, WWM6/12), a false double. The bare alternate generator is WWM6/12 = [33,19]/12 = [3,2] = m3. The bare enharmonic is [33,19] - 12*[3,2] = [-3,-5] = a quintuple-diminished 6th! This would make for a very confusing notation. However, [33,19]/12 can be rounded way up to [4,2] = M3. The enharmonic becomes [33,19] - 12*[4,2] = [-15,-5] = -5*[3,1] = -5 * v&lt;span style="vertical-align: super;"&gt;12&lt;/span&gt;A2, which is an improvement but still awkward. The period is ^&lt;span style="vertical-align: super;"&gt;4&lt;/span&gt;m3 and the generator is v&lt;span style="vertical-align: super;"&gt;3&lt;/span&gt;M2.&lt;br /&gt;
&lt;span style="display: block; text-align: center;"&gt;&lt;br /&gt;
&lt;span style="display: block; text-align: center;"&gt; P1 -- ^&lt;span style="vertical-align: super;"&gt;4&lt;/span&gt;m3 -- v&lt;span style="vertical-align: super;"&gt;4&lt;/span&gt;M6 -- C&lt;br /&gt;
P1 -- ^&lt;span style="vertical-align: super;"&gt;4&lt;/span&gt;m3 -- v&lt;span style="vertical-align: super;"&gt;4&lt;/span&gt;M6 -- C&lt;br /&gt;
C -- Eb^&lt;span style="vertical-align: super;"&gt;4&lt;/span&gt; -- Av&lt;span style="vertical-align: super;"&gt;4&lt;/span&gt; -- C&lt;br /&gt;
C -- Eb^&lt;span style="vertical-align: super;"&gt;4&lt;/span&gt; -- Av&lt;span style="vertical-align: super;"&gt;4&lt;/span&gt; -- C&lt;br /&gt;
P1 -- v&lt;span style="vertical-align: super;"&gt;3&lt;/span&gt;M2 -- v&lt;span style="vertical-align: super;"&gt;6&lt;/span&gt;M3=^&lt;span style="vertical-align: super;"&gt;6&lt;/span&gt;m2 -- ^&lt;span style="vertical-align: super;"&gt;3&lt;/span&gt;m3 -- P4&lt;br /&gt;
P1 -- v&lt;span style="vertical-align: super;"&gt;3&lt;/span&gt;M2 -- v&lt;span style="vertical-align: super;"&gt;6&lt;/span&gt;M3=^&lt;span style="vertical-align: super;"&gt;6&lt;/span&gt;m2 -- ^&lt;span style="vertical-align: super;"&gt;3&lt;/span&gt;m3 -- P4&lt;br /&gt;
Line 2,180: Line 2,165:
&lt;/span&gt;&lt;span style="display: block; text-align: center;"&gt;C -- Ev -- Ab^ -- C&lt;br /&gt;
&lt;/span&gt;&lt;span style="display: block; text-align: center;"&gt;C -- Ev -- Ab^ -- C&lt;br /&gt;
&lt;/span&gt;&lt;span style="display: block; text-align: center;"&gt;P1 -- /m2 -- &lt;!-- ws:start:WikiTextRawRule:029:``//`` --&gt;//&lt;!-- ws:end:WikiTextRawRule:029 --&gt;d3=\\A2 -- \M3 -- P4&lt;br /&gt;
&lt;/span&gt;&lt;span style="display: block; text-align: center;"&gt;P1 -- /m2 -- &lt;!-- ws:start:WikiTextRawRule:029:``//`` --&gt;//&lt;!-- ws:end:WikiTextRawRule:029 --&gt;d3=\\A2 -- \M3 -- P4&lt;br /&gt;
&lt;/span&gt;&lt;span style="display: block; text-align: center;"&gt;C -- Db/ -- Ebb&lt;!-- ws:start:WikiTextRawRule:030:``//`` --&gt;//&lt;!-- ws:end:WikiTextRawRule:030 --&gt;=D#\\ -- E\ -- F&lt;/span&gt;&lt;span style="display: block; text-align: center;"&gt;&lt;br /&gt;
&lt;/span&gt;&lt;span style="display: block; text-align: center;"&gt;C -- Db/ -- Ebb&lt;!-- ws:start:WikiTextRawRule:030:``//`` --&gt;//&lt;!-- ws:end:WikiTextRawRule:030 --&gt;=D#\\ -- E\ -- F&lt;/span&gt;&lt;br /&gt;
&lt;/span&gt;&lt;br /&gt;
Sometimes the temperament being notated implies a certain enharmonic. Specifically, the comma tempered out should map to the enharmonic, or some multiple of it.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
The comma equals xE and/or yE'.&lt;br /&gt;
The comma equals xE and/or yE'.&lt;br /&gt;
If M' = [a,b], then G' = [round(a/n'), round(b/n')] makes the smallest zE&amp;quot;, but not always the smallest E&amp;quot;&lt;br /&gt;
If M' = [a,b], then G' = [round(a/n'), round(b/n')] makes the smallest zE&amp;quot;, but not always the smallest E&amp;quot;&lt;br /&gt;