Kite's thoughts on pergens: Difference between revisions

Wikispaces>TallKite
**Imported revision 625811489 - Original comment: **
Wikispaces>TallKite
**Imported revision 625870419 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:TallKite|TallKite]] and made on <tt>2018-02-02 16:14:30 UTC</tt>.<br>
: This revision was by author [[User:TallKite|TallKite]] and made on <tt>2018-02-04 01:53:50 UTC</tt>.<br>
: The original revision id was <tt>625811489</tt>.<br>
: The original revision id was <tt>625870419</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
Line 492: Line 492:
The following table shows how to notate various 5-limit rank-2 temperaments. The sweet spot isn't precisely defined, thus all cents are approximate.
The following table shows how to notate various 5-limit rank-2 temperaments. The sweet spot isn't precisely defined, thus all cents are approximate.


||~ __temperament__ ||~ __comma__ ||~ __sweet spot__ ||||~ __no ups or downs__ ||||||~ __with ups and downs__ ||||~ __up symbol__ ||
||~ __5-limit temperament__ ||~ __comma__ ||~ __sweet spot__ ||||~ __no ups or downs__ ||||||~ __with ups and downs__ ||||~ __up symbol__ ||
||~   ||~  ||~ (5th = 700¢ + c) ||~ 5/4 is ||~ 4:5:6 chord ||~ 5/4 is ||~ 4:5:6 chord ||~ E ||~ ratio ||~ cents ||
||~ (pergen is unsplit) ||~  ||~ (5th = 700¢ + c) ||~ 5/4 is ||~ 4:5:6 chord ||~ 5/4 is ||~ 4:5:6 chord ||~ E ||~ ratio ||~ cents ||
||= meantone ||= 81/80 = P1 ||= c = -3¢ to -5¢ ||= M3 ||= C E G ||=  
||= meantone ||= 81/80 = P1 ||= c = -3¢ to -5¢ ||= M3 ||= C E G ||=  
---- ||=  
---- ||=  
Line 506: Line 506:
||= father ||= 16/15 = m2 ||= c = 56¢ to 58¢ ||= P4 ||= C F G ||= vM3 ||= C Ev G ||= ^m2 ||= 81/80 = -m2 ||= -100¢ + 5c = 180-190¢ ||
||= father ||= 16/15 = m2 ||= c = 56¢ to 58¢ ||= P4 ||= C F G ||= vM3 ||= C Ev G ||= ^m2 ||= 81/80 = -m2 ||= -100¢ + 5c = 180-190¢ ||
||= superpyth ||= (12,-9,1) = m2 ||= c = 9¢ to 10¢ ||= A2 ||= C D# G ||= vM3 ||= C Ev G ||= vm2 ||= 81/80 = m2 ||= 100¢ - 5c = 50-55¢ ||
||= superpyth ||= (12,-9,1) = m2 ||= c = 9¢ to 10¢ ||= A2 ||= C D# G ||= vM3 ||= C Ev G ||= vm2 ||= 81/80 = m2 ||= 100¢ - 5c = 50-55¢ ||
The schismic comma is a negative (i.e. descending) dim 2nd because it takes you down the scale, but up in pitch.
The schismic comma is a negative (i.e. descending) dim 2nd because it takes you down the scale, but up in pitch. The mavila temperament might be notated without ups and downs, because 5/4 is still a 3rd.


A similar table could be made for commas of the form (a,b,0,±1). Every such comma except for 64/63 would require ups and downs, to allow 7/4 to be spelled as a m7. A temperament with two commas may require double-pair notation to avoid spelling the 4:5:6:7 chord something like C Fb G A#.
A similar table could be made for 7-limit commas of the form (a,b,0,±1). Every such comma except for 64/63 would require ups and downs, if spelling 7/4 as a m7. An unsplit temperament with two commas may require double-pair notation to avoid spelling the 4:5:6:7 chord something like C Fb G A#.




==Notating Blackwood-like pergens==  
==Notating rank-3 pergens==  


By "Blackwood-like" is meant a temperament that equates some number of 5ths to some number of 8ves, thus equating the 5th to some exact fraction of the octave. The generator's ratio contains only 2 and one higher prime. For single-comma temperaments, the generator is simply an octave-reduced prime, with a ratio like 5/4 or 7/4. Multiple-comma temperaments can have split multigens like (8/5) or 25/16 or
Rank-1 edos sometimes require ups and downs, and sometimes don't. Rank-2 pergens sometimes require double-pair notation, and sometimes require single-pair, and occasionally (meantone) don't. Rank-3 pergens sometimes require triple-pair notation, and sometimes only require double- or single-pair notation. They can't ever be notated conventionally.


Such a pergen is in effect multiple copies of an edo. Its notation can be based on the edo's notation, expanded with an additional microtonal accidental pair.
Conventional notation is generated by the octave and the 5th, and the notation (not the tuning itself) is rank-2. Single-pair notation (conventional notation plus ups and downs) is generated by the 8ve, the 5th, and ^1. Enharmonics are like commas in that they reduce the notation's rank by one. So a rank-1 edo like 12 or 19 needs one enharmonic to reduce conventional notation down to rank-1. For 12edo, E = d2, for 19edo, E = dd2.


Blackwood 5edo+y perchain: D E=F G A B=C D (E = m2), genchain: ... Gb^^ Bb^ D F#v A#vv... (^1 = 81/80, no E)
A rank-2 pergen is either unsplit, single-split or double-split, and a double-split is either a true double or a false double. A rank-3 pergen can be any of these. Additionally, some rank-3 pergens are triple-splits, which are either true triples or false triples. False triples are like true doubles in that they only require two commas and two new accidental pairs. (There are even "superfalse" triples that can arise from a single comma, but one of the higher prime exponents in the comma must be at least 12, making it difficult to pump, and not very useful musically.) All true triples require triple-pair notation, but some false triples and some double-splits may use triple-pair as well, to avoid awkward enharmonics of a 3rd or more.
12edo+j perchain: D D#=Eb E F F#=Gb... C#=Db D (E = d2), genchain = C F^ Bb^^ (^1 = 33/32, no E)
17edo+y perchain: C C^ Dv D... (E = vm2), genchain: same as blackwood, but with / and \


All the previous rank-3 examples had the 2nd generator be a mapping comma, represented by an up. There is no enharmonic for that accidental, just as JI has no enharmonics.
||~ 7-limit temperament ||~ comma ||~ pergen ||~  ||~ period ||~ gen1 ||~ gen2 ||~ ^1 ||~ /1 ||~ E ||
||= Marvel ||= 225/224 ||= (P8, P5, ^1) ||= unsplit with ups ||= P8 ||= P5 ||= ^1 = 81/80 ||=  ||= --- ||= ---- ||
||= Deep reddish ||= 50/49 ||= (P8/2, P5, ^1) ||= half-8ve with ups ||= /d5 = 7/5 ||= P5 ||= ^1 = 81/80 ||=  ||=  ||= ``//``d2 ||
||= Triple bluish ||= 1029/1000 ||= (P8, P11/3, ^1) ||= third-11th with ups ||= P8 ||= \d5 = 7/5 ||= ^1 = 81/80 ||=  ||=  ||= ``\\\``dd3 ||
||= Breedsmic ||= 2401/2400 ||= (P8, P5/2, ^1) ||= half-5th with ups ||= P8 ||= \d4 = 49/40 ||= ^1 = 64/63 ||=  ||=  ||= ``\\``dd3 ||


==Notating rank-3 pergens==
(2.3.5.7 and 686/675) equates two 5/4's to three 7/6's, and divides 5/4 into three 15/14's. Its pergen is (P8, P5, y3/3) or (P8, P5, (5:4)/3) or maybe (P8, P5, vM3/3). The enharmonic is


Rank-1 edos sometimes require ups and downs, and sometimes don't. Rank-2 pergens sometimes require double-pair notation, and sometimes require single-pair, and occasionally (meantone) don't. Rank-3 pergens sometimes require triple-pair notation, and sometimes only require double- or single-pair notation. They can't ever be notated conventionally.


Conventional notation is generated by the octave and the fifth, and is rank-2.
==Notating Blackwood-like pergens==


A rank-2 pergen is either unsplit, single-split or double-split, and a double-split is either a true double or a false double. A rank-3 pergen can be any of these. Additionally, some rank-3 pergens are triple-splits, which are either true triples or false triples. False triples are like true doubles in that they only require two commas and two pairs. There may be very false triples that can arise from a single comma, who knows? All true triples require triple-pair notation, but some false triples and some double-splits will require triple-pair as well, to avoid awkward enharmonics of a 3rd or more.
A Blackwood-like temperament is rank-2 and equates some number of 5ths to some number of 8ves, thus equating the 5th to some exact fraction of the octave. The generator's ratio contains only 2 and one higher prime. For single-comma temperaments, the generator is simply an octave-reduced prime, with a ratio like 5/4 or 7/4. Multiple-comma temperaments can have split multigens like (8/5)/2 or (25/16)/4.


All the previous rank-3 examples had the 2nd generator (gen2 or G2) be a comma, represented by a up or a high. There is no enharmonic for that accidental, just as JI has no enharmonics.
Such a pergen is in effect multiple copies of an edo. Its notation can be based on the edo's notation, expanded with an additional microtonal accidental pair.


Marvel (2.3.5.7 and 225/224) is (P8, P5, ^1) = unsplit with ups (^1 = 81/80).
Blackwood 5edo+y perchain: D E=F G A B=C D (E = m2), genchain: ... Gb^^ Bb^ D F#v A#vv... (^1 = 81/80, no E)
Deep reddish (2.3.5.7 and 50/49) is (P8/2, P5, /1) = half-8ve with highs (/1 = 81/80).
12edo+j perchain: D D#=Eb E F F#=Gb... C#=Db D (E = d2), genchain = C F^ Bb^^ (^1 = 33/32, no E)
Triple bluish (2.3.5.7 and 1029/1000) is (P8, P11/3, ^1) = third-11th with ups. G1 =
17edo+y perchain: C C^ Dv D... (E = vm2), genchain: same as blackwood, but with / and \
Breedsmic (P8, P5/2, ^1) half-5th with ups, G2 = ^1 = 64/63, G1 = /m3 = 49/40, E = ``\\``A1
 
(2.3.5.7 and 686/675) equates two 5/4's to three 7/6's, and divides 5/4 into three 15/14's. Its pergen is (P8, P5, y3/3) or (P8, P5, (5:4)/3) or maybe (P8, P5, vM3/3). The enharmonic is




Line 544: Line 544:
Every rank-2 pergen generates certain MOS scales. This of course depends on the exact size of the generator. In this table, the 5th is assumed to be between 4\7 and 3\5. Sometimes the genchain is too short to generate the multigen. For example, (P8/3, P4/2) [6] has 3 genchains, each with only 2 notes, and thus only 1 step. But it takes 2 steps to make a 4th, so the scale doesn't actually contain any 4ths. Such scales are marked with an asterisk.
Every rank-2 pergen generates certain MOS scales. This of course depends on the exact size of the generator. In this table, the 5th is assumed to be between 4\7 and 3\5. Sometimes the genchain is too short to generate the multigen. For example, (P8/3, P4/2) [6] has 3 genchains, each with only 2 notes, and thus only 1 step. But it takes 2 steps to make a 4th, so the scale doesn't actually contain any 4ths. Such scales are marked with an asterisk.


||||~ pergen ||~ MOS scales ||~ of 5-12 notes ||~  ||~  ||~  ||~  ||
||||~ pergen ||||~ MOS scales of 5-12 notes ||~  ||~  ||~  ||~  ||
||= (P8, P5) ||= unsplit ||= 5 = 2L 3s ||= 7 = 5L 2s |||| 12 = 7L 5s (or 5L 7s) ||  ||  ||
||= (P8, P5) ||= unsplit ||= 5 = 2L 3s ||= 7 = 5L 2s |||| 12 = 7L 5s (or 5L 7s) ||  ||  ||
||||~ halves ||~  ||~  ||~  ||~  ||~  ||~  ||
||||~ halves ||~  ||~  ||~  ||~  ||~  ||~  ||
Line 818: Line 818:
Pergens were discovered by Kite Giedraitis in 2017, and developed with the help of Praveen Venkataramana.</pre></div>
Pergens were discovered by Kite Giedraitis in 2017, and developed with the help of Praveen Venkataramana.</pre></div>
<h4>Original HTML content:</h4>
<h4>Original HTML content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;pergen&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;!-- ws:start:WikiTextHeadingRule:53:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc0"&gt;&lt;!-- ws:end:WikiTextHeadingRule:53 --&gt; &lt;/h1&gt;
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;pergen&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;!-- ws:start:WikiTextHeadingRule:55:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc0"&gt;&lt;!-- ws:end:WikiTextHeadingRule:55 --&gt; &lt;/h1&gt;
  &lt;!-- ws:start:WikiTextTocRule:97:&amp;lt;img id=&amp;quot;wikitext@@toc@@normal&amp;quot; class=&amp;quot;WikiMedia WikiMediaToc&amp;quot; title=&amp;quot;Table of Contents&amp;quot; src=&amp;quot;/site/embedthumbnail/toc/normal?w=225&amp;amp;h=100&amp;quot;/&amp;gt; --&gt;&lt;div id="toc"&gt;&lt;h1 class="nopad"&gt;Table of Contents&lt;/h1&gt;&lt;!-- ws:end:WikiTextTocRule:97 --&gt;&lt;!-- ws:start:WikiTextTocRule:98: --&gt;&lt;div style="margin-left: 1em;"&gt;&lt;a href="#toc0"&gt; &lt;/a&gt;&lt;/div&gt;
  &lt;!-- ws:start:WikiTextTocRule:99:&amp;lt;img id=&amp;quot;wikitext@@toc@@normal&amp;quot; class=&amp;quot;WikiMedia WikiMediaToc&amp;quot; title=&amp;quot;Table of Contents&amp;quot; src=&amp;quot;/site/embedthumbnail/toc/normal?w=225&amp;amp;h=100&amp;quot;/&amp;gt; --&gt;&lt;div id="toc"&gt;&lt;h1 class="nopad"&gt;Table of Contents&lt;/h1&gt;&lt;!-- ws:end:WikiTextTocRule:99 --&gt;&lt;!-- ws:start:WikiTextTocRule:100: --&gt;&lt;div style="margin-left: 1em;"&gt;&lt;a href="#toc0"&gt; &lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:98 --&gt;&lt;!-- ws:start:WikiTextTocRule:99: --&gt;&lt;div style="margin-left: 1em;"&gt;&lt;a href="#Definition"&gt;Definition&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:100 --&gt;&lt;!-- ws:start:WikiTextTocRule:101: --&gt;&lt;div style="margin-left: 1em;"&gt;&lt;a href="#Definition"&gt;Definition&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:99 --&gt;&lt;!-- ws:start:WikiTextTocRule:100: --&gt;&lt;div style="margin-left: 1em;"&gt;&lt;a href="#Derivation"&gt;Derivation&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:101 --&gt;&lt;!-- ws:start:WikiTextTocRule:102: --&gt;&lt;div style="margin-left: 1em;"&gt;&lt;a href="#Derivation"&gt;Derivation&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:100 --&gt;&lt;!-- ws:start:WikiTextTocRule:101: --&gt;&lt;div style="margin-left: 1em;"&gt;&lt;a href="#Applications"&gt;Applications&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:102 --&gt;&lt;!-- ws:start:WikiTextTocRule:103: --&gt;&lt;div style="margin-left: 1em;"&gt;&lt;a href="#Applications"&gt;Applications&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:101 --&gt;&lt;!-- ws:start:WikiTextTocRule:102: --&gt;&lt;div style="margin-left: 2em;"&gt;&lt;a href="#Applications-Tipping points"&gt;Tipping points&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:103 --&gt;&lt;!-- ws:start:WikiTextTocRule:104: --&gt;&lt;div style="margin-left: 2em;"&gt;&lt;a href="#Applications-Tipping points"&gt;Tipping points&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:102 --&gt;&lt;!-- ws:start:WikiTextTocRule:103: --&gt;&lt;div style="margin-left: 1em;"&gt;&lt;a href="#Further Discussion"&gt;Further Discussion&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:104 --&gt;&lt;!-- ws:start:WikiTextTocRule:105: --&gt;&lt;div style="margin-left: 1em;"&gt;&lt;a href="#Further Discussion"&gt;Further Discussion&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:103 --&gt;&lt;!-- ws:start:WikiTextTocRule:104: --&gt;&lt;div style="margin-left: 2em;"&gt;&lt;a href="#Further Discussion-Extremely large multigens"&gt;Extremely large multigens&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:105 --&gt;&lt;!-- ws:start:WikiTextTocRule:106: --&gt;&lt;div style="margin-left: 2em;"&gt;&lt;a href="#Further Discussion-Extremely large multigens"&gt;Extremely large multigens&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:104 --&gt;&lt;!-- ws:start:WikiTextTocRule:105: --&gt;&lt;div style="margin-left: 2em;"&gt;&lt;a href="#Further Discussion-Singles and doubles"&gt;Singles and doubles&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:106 --&gt;&lt;!-- ws:start:WikiTextTocRule:107: --&gt;&lt;div style="margin-left: 2em;"&gt;&lt;a href="#Further Discussion-Singles and doubles"&gt;Singles and doubles&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:105 --&gt;&lt;!-- ws:start:WikiTextTocRule:106: --&gt;&lt;div style="margin-left: 2em;"&gt;&lt;a href="#Further Discussion-Finding an example temperament"&gt;Finding an example temperament&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:107 --&gt;&lt;!-- ws:start:WikiTextTocRule:108: --&gt;&lt;div style="margin-left: 2em;"&gt;&lt;a href="#Further Discussion-Finding an example temperament"&gt;Finding an example temperament&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:106 --&gt;&lt;!-- ws:start:WikiTextTocRule:107: --&gt;&lt;div style="margin-left: 2em;"&gt;&lt;a href="#Further Discussion-Ratio and cents of the accidentals"&gt;Ratio and cents of the accidentals&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:108 --&gt;&lt;!-- ws:start:WikiTextTocRule:109: --&gt;&lt;div style="margin-left: 2em;"&gt;&lt;a href="#Further Discussion-Ratio and cents of the accidentals"&gt;Ratio and cents of the accidentals&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:107 --&gt;&lt;!-- ws:start:WikiTextTocRule:108: --&gt;&lt;div style="margin-left: 2em;"&gt;&lt;a href="#Further Discussion-Finding a notation for a pergen"&gt;Finding a notation for a pergen&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:109 --&gt;&lt;!-- ws:start:WikiTextTocRule:110: --&gt;&lt;div style="margin-left: 2em;"&gt;&lt;a href="#Further Discussion-Finding a notation for a pergen"&gt;Finding a notation for a pergen&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:108 --&gt;&lt;!-- ws:start:WikiTextTocRule:109: --&gt;&lt;div style="margin-left: 2em;"&gt;&lt;a href="#Further Discussion-Alternate enharmonics"&gt;Alternate enharmonics&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:110 --&gt;&lt;!-- ws:start:WikiTextTocRule:111: --&gt;&lt;div style="margin-left: 2em;"&gt;&lt;a href="#Further Discussion-Alternate enharmonics"&gt;Alternate enharmonics&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:109 --&gt;&lt;!-- ws:start:WikiTextTocRule:110: --&gt;&lt;div style="margin-left: 2em;"&gt;&lt;a href="#Further Discussion-Chord names and scale names"&gt;Chord names and scale names&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:111 --&gt;&lt;!-- ws:start:WikiTextTocRule:112: --&gt;&lt;div style="margin-left: 2em;"&gt;&lt;a href="#Further Discussion-Chord names and scale names"&gt;Chord names and scale names&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:110 --&gt;&lt;!-- ws:start:WikiTextTocRule:111: --&gt;&lt;div style="margin-left: 2em;"&gt;&lt;a href="#Further Discussion-Tipping points and sweet spots"&gt;Tipping points and sweet spots&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:112 --&gt;&lt;!-- ws:start:WikiTextTocRule:113: --&gt;&lt;div style="margin-left: 2em;"&gt;&lt;a href="#Further Discussion-Tipping points and sweet spots"&gt;Tipping points and sweet spots&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:111 --&gt;&lt;!-- ws:start:WikiTextTocRule:112: --&gt;&lt;div style="margin-left: 2em;"&gt;&lt;a href="#Further Discussion-Notating unsplit pergens"&gt;Notating unsplit pergens&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:113 --&gt;&lt;!-- ws:start:WikiTextTocRule:114: --&gt;&lt;div style="margin-left: 2em;"&gt;&lt;a href="#Further Discussion-Notating unsplit pergens"&gt;Notating unsplit pergens&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:112 --&gt;&lt;!-- ws:start:WikiTextTocRule:113: --&gt;&lt;div style="margin-left: 2em;"&gt;&lt;a href="#Further Discussion-Notating Blackwood-like pergens"&gt;Notating Blackwood-like pergens&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:114 --&gt;&lt;!-- ws:start:WikiTextTocRule:115: --&gt;&lt;div style="margin-left: 2em;"&gt;&lt;a href="#Further Discussion-Notating rank-3 pergens"&gt;Notating rank-3 pergens&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:113 --&gt;&lt;!-- ws:start:WikiTextTocRule:114: --&gt;&lt;div style="margin-left: 2em;"&gt;&lt;a href="#Further Discussion-Notating rank-3 pergens"&gt;Notating rank-3 pergens&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:115 --&gt;&lt;!-- ws:start:WikiTextTocRule:116: --&gt;&lt;div style="margin-left: 2em;"&gt;&lt;a href="#Further Discussion-Notating Blackwood-like pergens"&gt;Notating Blackwood-like pergens&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:114 --&gt;&lt;!-- ws:start:WikiTextTocRule:115: --&gt;&lt;div style="margin-left: 2em;"&gt;&lt;a href="#Further Discussion-Pergens and MOS scales"&gt;Pergens and MOS scales&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:116 --&gt;&lt;!-- ws:start:WikiTextTocRule:117: --&gt;&lt;div style="margin-left: 2em;"&gt;&lt;a href="#Further Discussion-Pergens and MOS scales"&gt;Pergens and MOS scales&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:115 --&gt;&lt;!-- ws:start:WikiTextTocRule:116: --&gt;&lt;div style="margin-left: 2em;"&gt;&lt;a href="#Further Discussion-Pergens and EDOs"&gt;Pergens and EDOs&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:117 --&gt;&lt;!-- ws:start:WikiTextTocRule:118: --&gt;&lt;div style="margin-left: 2em;"&gt;&lt;a href="#Further Discussion-Pergens and EDOs"&gt;Pergens and EDOs&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:116 --&gt;&lt;!-- ws:start:WikiTextTocRule:117: --&gt;&lt;div style="margin-left: 2em;"&gt;&lt;a href="#Further Discussion-Supplemental materials"&gt;Supplemental materials&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:118 --&gt;&lt;!-- ws:start:WikiTextTocRule:119: --&gt;&lt;div style="margin-left: 2em;"&gt;&lt;a href="#Further Discussion-Supplemental materials"&gt;Supplemental materials&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:117 --&gt;&lt;!-- ws:start:WikiTextTocRule:118: --&gt;&lt;div style="margin-left: 2em;"&gt;&lt;a href="#Further Discussion-Various proofs (unfinished)"&gt;Various proofs (unfinished)&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:119 --&gt;&lt;!-- ws:start:WikiTextTocRule:120: --&gt;&lt;div style="margin-left: 2em;"&gt;&lt;a href="#Further Discussion-Various proofs (unfinished)"&gt;Various proofs (unfinished)&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:118 --&gt;&lt;!-- ws:start:WikiTextTocRule:119: --&gt;&lt;div style="margin-left: 2em;"&gt;&lt;a href="#Further Discussion-Miscellaneous Notes"&gt;Miscellaneous Notes&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:120 --&gt;&lt;!-- ws:start:WikiTextTocRule:121: --&gt;&lt;div style="margin-left: 2em;"&gt;&lt;a href="#Further Discussion-Miscellaneous Notes"&gt;Miscellaneous Notes&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:119 --&gt;&lt;!-- ws:start:WikiTextTocRule:120: --&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:121 --&gt;&lt;!-- ws:start:WikiTextTocRule:122: --&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:120 --&gt;&lt;!-- ws:start:WikiTextHeadingRule:55:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc1"&gt;&lt;a name="Definition"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:55 --&gt;&lt;u&gt;&lt;strong&gt;Definition&lt;/strong&gt;&lt;/u&gt;&lt;/h1&gt;
&lt;!-- ws:end:WikiTextTocRule:122 --&gt;&lt;!-- ws:start:WikiTextHeadingRule:57:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc1"&gt;&lt;a name="Definition"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:57 --&gt;&lt;u&gt;&lt;strong&gt;Definition&lt;/strong&gt;&lt;/u&gt;&lt;/h1&gt;
  &lt;br /&gt;
  &lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
Line 1,092: Line 1,092:
In keeping with the higher-prime-agnostic nature of pergens, untempered just intonation has a pergen of the octave, the fifth, and a list of commas, each containing only one higher prime: (P8, P5, 81:80, 64:63, ...). The higher prime's exponent in the comma's monzo must be ±1. The commas can be replaced with microtonal accidentals: (P8, P5, ^1, /1,...).&lt;br /&gt;
In keeping with the higher-prime-agnostic nature of pergens, untempered just intonation has a pergen of the octave, the fifth, and a list of commas, each containing only one higher prime: (P8, P5, 81:80, 64:63, ...). The higher prime's exponent in the comma's monzo must be ±1. The commas can be replaced with microtonal accidentals: (P8, P5, ^1, /1,...).&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:57:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc2"&gt;&lt;a name="Derivation"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:57 --&gt;&lt;u&gt;Derivation&lt;/u&gt;&lt;/h1&gt;
&lt;!-- ws:start:WikiTextHeadingRule:59:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc2"&gt;&lt;a name="Derivation"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:59 --&gt;&lt;u&gt;Derivation&lt;/u&gt;&lt;/h1&gt;
  &lt;br /&gt;
  &lt;br /&gt;
For any comma containing primes 2 and 3, let m = the GCD of all the monzo's exponents other than the 2-exponent, and let n = the GCD of all its higher-prime exponents. The comma will split the octave into m parts, and if n &amp;gt; m, it will split some 3-limit interval into n parts.&lt;br /&gt;
For any comma containing primes 2 and 3, let m = the GCD of all the monzo's exponents other than the 2-exponent, and let n = the GCD of all its higher-prime exponents. The comma will split the octave into m parts, and if n &amp;gt; m, it will split some 3-limit interval into n parts.&lt;br /&gt;
Line 1,377: Line 1,377:
Again, period = P8 and gen1 = P5/2. Gen2 = (-3,-1,2)/2. To add gen1 to gen2, add a double gen1 to the 2nd multigen, the multigen2. A double half-5th is a 5th = (-1,1,0), and this gives us (-4,0,2)/2 = (-2,0,1) = 7/4. The fraction disappears, the multigen becomes the gen, and we can add/subtract the period and the gen1 directly. Subtracting an octave and inverting makes gen2 = 8/7. Adding an octave and subtracting 4 half-5ths makes 64/63. The pergen is (P8, P5/2, 64:63). Let ^1 = 64/63, and the pergen is (P8, P5/2, ^1), half-5th with ups. This is far better than (P8, P5/2, (96:25)/4). The pergen sometimes uses a larger prime in place of a smaller one in order to avoid splitting gen2, but only if the smaller prime is &amp;gt; 3. In other words, the first priority is to have as few higher primes (colors) as possible, next to have as few fractions as possible, finally to have the higher primes be as small as possible.&lt;br /&gt;
Again, period = P8 and gen1 = P5/2. Gen2 = (-3,-1,2)/2. To add gen1 to gen2, add a double gen1 to the 2nd multigen, the multigen2. A double half-5th is a 5th = (-1,1,0), and this gives us (-4,0,2)/2 = (-2,0,1) = 7/4. The fraction disappears, the multigen becomes the gen, and we can add/subtract the period and the gen1 directly. Subtracting an octave and inverting makes gen2 = 8/7. Adding an octave and subtracting 4 half-5ths makes 64/63. The pergen is (P8, P5/2, 64:63). Let ^1 = 64/63, and the pergen is (P8, P5/2, ^1), half-5th with ups. This is far better than (P8, P5/2, (96:25)/4). The pergen sometimes uses a larger prime in place of a smaller one in order to avoid splitting gen2, but only if the smaller prime is &amp;gt; 3. In other words, the first priority is to have as few higher primes (colors) as possible, next to have as few fractions as possible, finally to have the higher primes be as small as possible.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:59:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc3"&gt;&lt;a name="Applications"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:59 --&gt;&lt;u&gt;Applications&lt;/u&gt;&lt;/h1&gt;
&lt;!-- ws:start:WikiTextHeadingRule:61:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc3"&gt;&lt;a name="Applications"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:61 --&gt;&lt;u&gt;Applications&lt;/u&gt;&lt;/h1&gt;
  &lt;br /&gt;
  &lt;br /&gt;
One obvious application is to name regular temperaments in a logical, consistent manner, avoiding the need to memorize many arbitrary names. Many temperaments have pergen-like names: Hemififths is (P8, P5/2), semihemi is (P8/2, P4/2), triforce is (P8/3, P4/2), both tetracot and semihemififths are (P8, P5/4), fourfives is (P8/4, P5/5), pental is (P8/5, P5), and fifive is (P8/2, P5/5). Pergen names are an improvement over these because they specify more exactly what is split. Some temperament names are what might be called a pseudo-pergen, because either it contains more than 2 primes, or because the multigen isn't actually a generator. For example, sensei, or semisixth, implies a pseudo-pergen (P8, (5/3)/2) that contains 3 primes. Meantone (mean = average, tone = major 2nd) implies a pseudo-pergen of (P8, (5/4)/2), only 2 primes, but the tone isn't a generator.&lt;br /&gt;
One obvious application is to name regular temperaments in a logical, consistent manner, avoiding the need to memorize many arbitrary names. Many temperaments have pergen-like names: Hemififths is (P8, P5/2), semihemi is (P8/2, P4/2), triforce is (P8/3, P4/2), both tetracot and semihemififths are (P8, P5/4), fourfives is (P8/4, P5/5), pental is (P8/5, P5), and fifive is (P8/2, P5/5). Pergen names are an improvement over these because they specify more exactly what is split. Some temperament names are what might be called a pseudo-pergen, because either it contains more than 2 primes, or because the multigen isn't actually a generator. For example, sensei, or semisixth, implies a pseudo-pergen (P8, (5/3)/2) that contains 3 primes. Meantone (mean = average, tone = major 2nd) implies a pseudo-pergen of (P8, (5/4)/2), only 2 primes, but the tone isn't a generator.&lt;br /&gt;
Line 2,164: Line 2,164:


&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:61:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc4"&gt;&lt;a name="Applications-Tipping points"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:61 --&gt;Tipping points&lt;/h2&gt;
&lt;!-- ws:start:WikiTextHeadingRule:63:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc4"&gt;&lt;a name="Applications-Tipping points"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:63 --&gt;Tipping points&lt;/h2&gt;
  &lt;br /&gt;
  &lt;br /&gt;
Removing the ups and downs from an enharmonic interval makes a &amp;quot;bare&amp;quot; enharmonic, a conventional 3-limit interval which vanishes in certain edos. For example, (P8/2, P5)'s enharmonic interval is ^^d2, the bare enharmonic is d2, and d2 vanishes in 12-edo. Every rank-2 temperament has a &amp;quot;sweet spot&amp;quot; for tuning the 5th, usually a narrow range of about 5-10¢. 12-edo's fifth is the &amp;quot;tipping point&amp;quot;: if the temperament's 5th is flatter than 12-edo's, d2 is ascending, and if it's sharper, it's descending. The ups and downs are meant to indicate that the enharmonic interval vanishes. Thus if d2 is ascending, it should be downed, and if it's descending, upped. Therefore &lt;u&gt;&lt;strong&gt;ups and downs may need to be swapped, depending on the size of the 5th&lt;/strong&gt;&lt;/u&gt; in the particular rank-2 tuning you are using. In the above table, this is shown explicitly for (P8/2, P5), and implied for all the other pergens. In the table, the other pergens' enharmonic intervals are upped or downed as if the 5th were just.&lt;br /&gt;
Removing the ups and downs from an enharmonic interval makes a &amp;quot;bare&amp;quot; enharmonic, a conventional 3-limit interval which vanishes in certain edos. For example, (P8/2, P5)'s enharmonic interval is ^^d2, the bare enharmonic is d2, and d2 vanishes in 12-edo. Every rank-2 temperament has a &amp;quot;sweet spot&amp;quot; for tuning the 5th, usually a narrow range of about 5-10¢. 12-edo's fifth is the &amp;quot;tipping point&amp;quot;: if the temperament's 5th is flatter than 12-edo's, d2 is ascending, and if it's sharper, it's descending. The ups and downs are meant to indicate that the enharmonic interval vanishes. Thus if d2 is ascending, it should be downed, and if it's descending, upped. Therefore &lt;u&gt;&lt;strong&gt;ups and downs may need to be swapped, depending on the size of the 5th&lt;/strong&gt;&lt;/u&gt; in the particular rank-2 tuning you are using. In the above table, this is shown explicitly for (P8/2, P5), and implied for all the other pergens. In the table, the other pergens' enharmonic intervals are upped or downed as if the 5th were just.&lt;br /&gt;
Line 2,411: Line 2,411:
&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:63:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc5"&gt;&lt;a name="Further Discussion"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:63 --&gt;&lt;u&gt;Further Discussion&lt;/u&gt;&lt;/h1&gt;
&lt;!-- ws:start:WikiTextHeadingRule:65:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc5"&gt;&lt;a name="Further Discussion"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:65 --&gt;&lt;u&gt;Further Discussion&lt;/u&gt;&lt;/h1&gt;
  &lt;br /&gt;
  &lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:65:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc6"&gt;&lt;a name="Further Discussion-Extremely large multigens"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:65 --&gt;Extremely large multigens&lt;/h2&gt;
&lt;!-- ws:start:WikiTextHeadingRule:67:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc6"&gt;&lt;a name="Further Discussion-Extremely large multigens"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:67 --&gt;Extremely large multigens&lt;/h2&gt;
  &lt;br /&gt;
  &lt;br /&gt;
So far, the largest multigen has been a 12th. As the multigen fractions get larger, the multigen gets quite wide. To avoid cumbersome degree names like 16th or 22nd, for degrees above 12, the widening is indicated with one &amp;quot;W&amp;quot; per octave. Thus 32/9 = Wm7, 9/2 = WWM2 or WM9, etc. For (P8, M/n), valid multigens are any voicing of the fifth that is less than n/2 octaves. For (P8, M/6), the multigen can be P4, P5, P11, P12, WWP4 or WWP5.&lt;br /&gt;
So far, the largest multigen has been a 12th. As the multigen fractions get larger, the multigen gets quite wide. To avoid cumbersome degree names like 16th or 22nd, for degrees above 12, the widening is indicated with one &amp;quot;W&amp;quot; per octave. Thus 32/9 = Wm7, 9/2 = WWM2 or WM9, etc. For (P8, M/n), valid multigens are any voicing of the fifth that is less than n/2 octaves. For (P8, M/6), the multigen can be P4, P5, P11, P12, WWP4 or WWP5.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:67:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc7"&gt;&lt;a name="Further Discussion-Singles and doubles"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:67 --&gt;Singles and doubles&lt;/h2&gt;
&lt;!-- ws:start:WikiTextHeadingRule:69:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc7"&gt;&lt;a name="Further Discussion-Singles and doubles"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:69 --&gt;Singles and doubles&lt;/h2&gt;
  &lt;br /&gt;
  &lt;br /&gt;
If a pergen has only one fraction, like (P8/2, P5) or (P8, P4/3), the pergen is a &lt;strong&gt;single-split&lt;/strong&gt; pergen. If it has two fractions, it's a &lt;strong&gt;double-split&lt;/strong&gt; pergen. A single-split pergen can result from tempering out only a single comma, although it can be created by multiple commas. A single-split pergen can be notated with only ups and downs, called &lt;strong&gt;single-pair&lt;/strong&gt; notation because it adds only a single pair of accidentals to conventional notation. &lt;strong&gt;Double-pair&lt;/strong&gt; notation uses both ups/downs and highs/lows. In general, single-pair notation is preferred, because it's simpler. However, double-pair notation may be preferred, especially if the enharmonic for single-pair notation is a 3rd or larger. In this article, ups and downs are used for the octave-splitting enharmonic, and highs/lows are used for the multigen-splitting enharmonic. But the choice of which pair of accidentals is used for which enharmonic is arbitrary, and ups/downs could be exchanged with highs/lows.&lt;br /&gt;
If a pergen has only one fraction, like (P8/2, P5) or (P8, P4/3), the pergen is a &lt;strong&gt;single-split&lt;/strong&gt; pergen. If it has two fractions, it's a &lt;strong&gt;double-split&lt;/strong&gt; pergen. A single-split pergen can result from tempering out only a single comma, although it can be created by multiple commas. A single-split pergen can be notated with only ups and downs, called &lt;strong&gt;single-pair&lt;/strong&gt; notation because it adds only a single pair of accidentals to conventional notation. &lt;strong&gt;Double-pair&lt;/strong&gt; notation uses both ups/downs and highs/lows. In general, single-pair notation is preferred, because it's simpler. However, double-pair notation may be preferred, especially if the enharmonic for single-pair notation is a 3rd or larger. In this article, ups and downs are used for the octave-splitting enharmonic, and highs/lows are used for the multigen-splitting enharmonic. But the choice of which pair of accidentals is used for which enharmonic is arbitrary, and ups/downs could be exchanged with highs/lows.&lt;br /&gt;
Line 2,426: Line 2,426:
A pergen (P8/m, (a,b)/n) is a false double if and only if GCD (m,n) = |b|. The next section discusses an alternate test.&lt;br /&gt;
A pergen (P8/m, (a,b)/n) is a false double if and only if GCD (m,n) = |b|. The next section discusses an alternate test.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:69:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc8"&gt;&lt;a name="Further Discussion-Finding an example temperament"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:69 --&gt;Finding an example temperament&lt;/h2&gt;
&lt;!-- ws:start:WikiTextHeadingRule:71:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc8"&gt;&lt;a name="Further Discussion-Finding an example temperament"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:71 --&gt;Finding an example temperament&lt;/h2&gt;
  &lt;br /&gt;
  &lt;br /&gt;
To find an example of a temperament with a specific pergen, we must find the comma(s) the temperament tempers out. To construct a comma that creates a single-split pergen, find a ratio for P or G that contains only one higher prime, with exponent ±1, of appropriate cents to add up to approximately the octave or the multigen. The comma is the difference between the stacked ratios and the larger interval. For example, (P8/4, P5) requires a P of about 300¢. The comma is the difference between 4&lt;span class="nowrap"&gt;⋅&lt;/span&gt;P and P8. If P is 6/5, the comma is 4&lt;span class="nowrap"&gt;⋅&lt;/span&gt;P - P8 = (6/5)&lt;span style="vertical-align: super;"&gt;4&lt;/span&gt; ÷ (2/1) = 648/625. If P is 7/6, the comma is P8 - 4&lt;span class="nowrap"&gt;⋅&lt;/span&gt;P = (2/1) · (7/6)&lt;span style="vertical-align: super;"&gt;-4&lt;/span&gt;. Neither 13/11 nor 32/27 would work for P, too many and too few higher primes respectively. (P8, P4/3) requires a G of about (498¢)/3 = 166¢, perhaps 10/9. The comma is 3&lt;span class="nowrap"&gt;⋅&lt;/span&gt;G - P4 = (10/9)^3 ÷ (4/3) = 250/243.&lt;br /&gt;
To find an example of a temperament with a specific pergen, we must find the comma(s) the temperament tempers out. To construct a comma that creates a single-split pergen, find a ratio for P or G that contains only one higher prime, with exponent ±1, of appropriate cents to add up to approximately the octave or the multigen. The comma is the difference between the stacked ratios and the larger interval. For example, (P8/4, P5) requires a P of about 300¢. The comma is the difference between 4&lt;span class="nowrap"&gt;⋅&lt;/span&gt;P and P8. If P is 6/5, the comma is 4&lt;span class="nowrap"&gt;⋅&lt;/span&gt;P - P8 = (6/5)&lt;span style="vertical-align: super;"&gt;4&lt;/span&gt; ÷ (2/1) = 648/625. If P is 7/6, the comma is P8 - 4&lt;span class="nowrap"&gt;⋅&lt;/span&gt;P = (2/1) · (7/6)&lt;span style="vertical-align: super;"&gt;-4&lt;/span&gt;. Neither 13/11 nor 32/27 would work for P, too many and too few higher primes respectively. (P8, P4/3) requires a G of about (498¢)/3 = 166¢, perhaps 10/9. The comma is 3&lt;span class="nowrap"&gt;⋅&lt;/span&gt;G - P4 = (10/9)^3 ÷ (4/3) = 250/243.&lt;br /&gt;
Line 2,448: Line 2,448:
There are also alternate enharmonics, see below. For double-pair notation, there are also equivalent enharmonics.&lt;br /&gt;
There are also alternate enharmonics, see below. For double-pair notation, there are also equivalent enharmonics.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:71:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc9"&gt;&lt;a name="Further Discussion-Ratio and cents of the accidentals"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:71 --&gt;Ratio and cents of the accidentals&lt;/h2&gt;
&lt;!-- ws:start:WikiTextHeadingRule:73:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc9"&gt;&lt;a name="Further Discussion-Ratio and cents of the accidentals"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:73 --&gt;Ratio and cents of the accidentals&lt;/h2&gt;
  &lt;br /&gt;
  &lt;br /&gt;
In a 5-limit temperament, the up symbol is generally 81/80. However, for diminished (which sets 6/5 = P8/4), ^1 = 80/81. in every temperament except those in the meantone family, the 81/80 comma is not tempered out, but it is still tempered, just like every ratio. Occasionally 81/80 is tempered so far that it becomes a descending interval. In a 2.3.7 rank-2 temperament, ^1 is often 64/63, or perhaps 63/64. #1 is always (-11,7) = 2187/2048, by definition.&lt;br /&gt;
In a 5-limit temperament, the up symbol is generally 81/80. However, for diminished (which sets 6/5 = P8/4), ^1 = 80/81. in every temperament except those in the meantone family, the 81/80 comma is not tempered out, but it is still tempered, just like every ratio. Occasionally 81/80 is tempered so far that it becomes a descending interval. In a 2.3.7 rank-2 temperament, ^1 is often 64/63, or perhaps 63/64. #1 is always (-11,7) = 2187/2048, by definition.&lt;br /&gt;
Line 2,477: Line 2,477:
&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:73:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc10"&gt;&lt;a name="Further Discussion-Finding a notation for a pergen"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:73 --&gt;Finding a notation for a pergen&lt;/h2&gt;
&lt;!-- ws:start:WikiTextHeadingRule:75:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc10"&gt;&lt;a name="Further Discussion-Finding a notation for a pergen"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:75 --&gt;Finding a notation for a pergen&lt;/h2&gt;
  &lt;br /&gt;
  &lt;br /&gt;
There are multiple notations for a given pergen, depending on the enharmonic interval(s). Preferably, the enharmonic's degree will be a unison or a 2nd, because equating two notes a 3rd or 4th apart is very disconcerting. If it's a unison, it will always be an A1. (P1 would be pointless, d1 would be inverted to A1, and AA1 would be split into two A1's.) If it's a 2nd, preferably it will be a m2 or a d2 or a dd2, and not a M2 or an A2 or a ddd2. There is an easy method for finding such a pergen, if one exists. First, some terminology and basic concepts:&lt;br /&gt;
There are multiple notations for a given pergen, depending on the enharmonic interval(s). Preferably, the enharmonic's degree will be a unison or a 2nd, because equating two notes a 3rd or 4th apart is very disconcerting. If it's a unison, it will always be an A1. (P1 would be pointless, d1 would be inverted to A1, and AA1 would be split into two A1's.) If it's a 2nd, preferably it will be a m2 or a d2 or a dd2, and not a M2 or an A2 or a ddd2. There is an easy method for finding such a pergen, if one exists. First, some terminology and basic concepts:&lt;br /&gt;
Line 2,512: Line 2,512:
This is a lot of math, but it only needs to be done once for each pergen!&lt;br /&gt;
This is a lot of math, but it only needs to be done once for each pergen!&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:75:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc11"&gt;&lt;a name="Further Discussion-Alternate enharmonics"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:75 --&gt;Alternate enharmonics&lt;/h2&gt;
&lt;!-- ws:start:WikiTextHeadingRule:77:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc11"&gt;&lt;a name="Further Discussion-Alternate enharmonics"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:77 --&gt;Alternate enharmonics&lt;/h2&gt;
  &lt;br /&gt;
  &lt;br /&gt;
Sometimes the enharmonic found by rounding off the gedra can be greatly improved by rounding off differently. For example, (P8/3, P4/4) unreduces to (P8/3, WWM6/12), a false double. The bare alternate generator is WWM6/12 = [33,19]/12 = [3,2] = m3. The bare enharmonic is [33,19] - 12·[3,2] = [-3,-5] = a quintuple-diminished 6th! This would make for a very confusing notation. However, [33,19]/12 can be rounded very inaccurately all the way up to [4,2] = M3. The enharmonic becomes [33,19] - 12·[4,2] = [-15,-5] = -5·[3,1] = -5·v&lt;span style="vertical-align: super;"&gt;12&lt;/span&gt;A2, which is an improvement but still awkward. The period is ^&lt;span style="vertical-align: super;"&gt;4&lt;/span&gt;m3 and the generator is v&lt;span style="vertical-align: super;"&gt;3&lt;/span&gt;M2.&lt;br /&gt;
Sometimes the enharmonic found by rounding off the gedra can be greatly improved by rounding off differently. For example, (P8/3, P4/4) unreduces to (P8/3, WWM6/12), a false double. The bare alternate generator is WWM6/12 = [33,19]/12 = [3,2] = m3. The bare enharmonic is [33,19] - 12·[3,2] = [-3,-5] = a quintuple-diminished 6th! This would make for a very confusing notation. However, [33,19]/12 can be rounded very inaccurately all the way up to [4,2] = M3. The enharmonic becomes [33,19] - 12·[4,2] = [-15,-5] = -5·[3,1] = -5·v&lt;span style="vertical-align: super;"&gt;12&lt;/span&gt;A2, which is an improvement but still awkward. The period is ^&lt;span style="vertical-align: super;"&gt;4&lt;/span&gt;m3 and the generator is v&lt;span style="vertical-align: super;"&gt;3&lt;/span&gt;M2.&lt;br /&gt;
Line 2,540: Line 2,540:
&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:77:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc12"&gt;&lt;a name="Further Discussion-Chord names and scale names"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:77 --&gt;Chord names and scale names&lt;/h2&gt;
&lt;!-- ws:start:WikiTextHeadingRule:79:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc12"&gt;&lt;a name="Further Discussion-Chord names and scale names"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:79 --&gt;Chord names and scale names&lt;/h2&gt;
  &lt;br /&gt;
  &lt;br /&gt;
Using pergens, all rank-2 chords can be named using ups and downs, and if needed highs and lows as well. See the &lt;a class="wiki_link" href="/Ups%20and%20Downs%20Notation"&gt;ups and downs&lt;/a&gt; page for chord naming conventions. The genchain and/or the perchain creates a lattice in which each note and each interval has its own name. The many enharmonic equivalents allow proper chord spelling.&lt;br /&gt;
Using pergens, all rank-2 chords can be named using ups and downs, and if needed highs and lows as well. See the &lt;a class="wiki_link" href="/Ups%20and%20Downs%20Notation"&gt;ups and downs&lt;/a&gt; page for chord naming conventions. The genchain and/or the perchain creates a lattice in which each note and each interval has its own name. The many enharmonic equivalents allow proper chord spelling.&lt;br /&gt;
Line 2,557: Line 2,557:
&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:79:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc13"&gt;&lt;a name="Further Discussion-Tipping points and sweet spots"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:79 --&gt;Tipping points and sweet spots&lt;/h2&gt;
&lt;!-- ws:start:WikiTextHeadingRule:81:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc13"&gt;&lt;a name="Further Discussion-Tipping points and sweet spots"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:81 --&gt;Tipping points and sweet spots&lt;/h2&gt;
  &lt;br /&gt;
  &lt;br /&gt;
As noted above, the 5th of pajara (half-8ve) tends to be sharp, thus it has E = ^^d2. But injera, also half-8ve, has a flat 5th, and thus E = vvd2. The tipping point for half-octave with a d2 enharmonic is 700¢, 12-edo's 5th. It is fine for two temperaments with the same pergen to be on opposite sides of the tipping point. But if a single temperament &amp;quot;tips over&amp;quot;, either the up symbol sometimes means down in pitch, or even worse, the direction of ups and downs for a piece would reverse if the tuning is adjusted slightly. Fortunately, the temperament's &amp;quot;sweet spot&amp;quot;, where the damage to those JI ratios likely to occur in chords is minimized, rarely contains the tipping point.&lt;br /&gt;
As noted above, the 5th of pajara (half-8ve) tends to be sharp, thus it has E = ^^d2. But injera, also half-8ve, has a flat 5th, and thus E = vvd2. The tipping point for half-octave with a d2 enharmonic is 700¢, 12-edo's 5th. It is fine for two temperaments with the same pergen to be on opposite sides of the tipping point. But if a single temperament &amp;quot;tips over&amp;quot;, either the up symbol sometimes means down in pitch, or even worse, the direction of ups and downs for a piece would reverse if the tuning is adjusted slightly. Fortunately, the temperament's &amp;quot;sweet spot&amp;quot;, where the damage to those JI ratios likely to occur in chords is minimized, rarely contains the tipping point.&lt;br /&gt;
Line 2,570: Line 2,570:
&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:81:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc14"&gt;&lt;a name="Further Discussion-Notating unsplit pergens"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:81 --&gt;Notating unsplit pergens&lt;/h2&gt;
&lt;!-- ws:start:WikiTextHeadingRule:83:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc14"&gt;&lt;a name="Further Discussion-Notating unsplit pergens"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:83 --&gt;Notating unsplit pergens&lt;/h2&gt;
  &lt;br /&gt;
  &lt;br /&gt;
An unsplit pergen doesn't &lt;u&gt;require&lt;/u&gt; ups and downs, but they are generally needed for proper chord spellings. The only exception is when tempering out the mapping comma, such as meantone or archy (2.3.7 and 64/63). For single-comma temperaments, the pergen is unsplit if and only if the vanishing comma's monzo has a final exponent of ±1.&lt;br /&gt;
An unsplit pergen doesn't &lt;u&gt;require&lt;/u&gt; ups and downs, but they are generally needed for proper chord spellings. The only exception is when tempering out the mapping comma, such as meantone or archy (2.3.7 and 64/63). For single-comma temperaments, the pergen is unsplit if and only if the vanishing comma's monzo has a final exponent of ±1.&lt;br /&gt;
Line 2,580: Line 2,580:
&lt;table class="wiki_table"&gt;
&lt;table class="wiki_table"&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;th&gt;&lt;u&gt;temperament&lt;/u&gt;&lt;br /&gt;
         &lt;th&gt;&lt;u&gt;5-limit temperament&lt;/u&gt;&lt;br /&gt;
&lt;/th&gt;
&lt;/th&gt;
         &lt;th&gt;&lt;u&gt;comma&lt;/u&gt;&lt;br /&gt;
         &lt;th&gt;&lt;u&gt;comma&lt;/u&gt;&lt;br /&gt;
Line 2,594: Line 2,594:
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;th&gt;&lt;br /&gt;
         &lt;th&gt;(pergen is unsplit)&lt;br /&gt;
&lt;/th&gt;
&lt;/th&gt;
         &lt;th&gt;&lt;br /&gt;
         &lt;th&gt;&lt;br /&gt;
Line 2,771: Line 2,771:
&lt;/table&gt;
&lt;/table&gt;


The schismic comma is a negative (i.e. descending) dim 2nd because it takes you down the scale, but up in pitch.&lt;br /&gt;
The schismic comma is a negative (i.e. descending) dim 2nd because it takes you down the scale, but up in pitch. The mavila temperament might be notated without ups and downs, because 5/4 is still a 3rd.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
A similar table could be made for commas of the form (a,b,0,±1). Every such comma except for 64/63 would require ups and downs, to allow 7/4 to be spelled as a m7. A temperament with two commas may require double-pair notation to avoid spelling the 4:5:6:7 chord something like C Fb G A#.&lt;br /&gt;
A similar table could be made for 7-limit commas of the form (a,b,0,±1). Every such comma except for 64/63 would require ups and downs, if spelling 7/4 as a m7. An unsplit temperament with two commas may require double-pair notation to avoid spelling the 4:5:6:7 chord something like C Fb G A#.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:83:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc15"&gt;&lt;a name="Further Discussion-Notating Blackwood-like pergens"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:83 --&gt;Notating Blackwood-like pergens&lt;/h2&gt;
&lt;!-- ws:start:WikiTextHeadingRule:85:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc15"&gt;&lt;a name="Further Discussion-Notating rank-3 pergens"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:85 --&gt;Notating rank-3 pergens&lt;/h2&gt;
&lt;br /&gt;
By &amp;quot;Blackwood-like&amp;quot; is meant a temperament that equates some number of 5ths to some number of 8ves, thus equating the 5th to some exact fraction of the octave. The generator's ratio contains only 2 and one higher prime. For single-comma temperaments, the generator is simply an octave-reduced prime, with a ratio like 5/4 or 7/4. Multiple-comma temperaments can have split multigens like (8/5) or 25/16 or&lt;br /&gt;
&lt;br /&gt;
Such a pergen is in effect multiple copies of an edo. Its notation can be based on the edo's notation, expanded with an additional microtonal accidental pair.&lt;br /&gt;
&lt;br /&gt;
Blackwood 5edo+y perchain: D E=F G A B=C D (E = m2), genchain: ... Gb^^ Bb^ D F#v A#vv... (^1 = 81/80, no E)&lt;br /&gt;
12edo+j perchain: D D#=Eb E F F#=Gb... C#=Db D (E = d2), genchain = C F^ Bb^^ (^1 = 33/32, no E)&lt;br /&gt;
17edo+y perchain: C C^ Dv D... (E = vm2), genchain: same as blackwood, but with / and \&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:85:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc16"&gt;&lt;a name="Further Discussion-Notating rank-3 pergens"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:85 --&gt;Notating rank-3 pergens&lt;/h2&gt;
  &lt;br /&gt;
  &lt;br /&gt;
Rank-1 edos sometimes require ups and downs, and sometimes don't. Rank-2 pergens sometimes require double-pair notation, and sometimes require single-pair, and occasionally (meantone) don't. Rank-3 pergens sometimes require triple-pair notation, and sometimes only require double- or single-pair notation. They can't ever be notated conventionally.&lt;br /&gt;
Rank-1 edos sometimes require ups and downs, and sometimes don't. Rank-2 pergens sometimes require double-pair notation, and sometimes require single-pair, and occasionally (meantone) don't. Rank-3 pergens sometimes require triple-pair notation, and sometimes only require double- or single-pair notation. They can't ever be notated conventionally.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
Conventional notation is generated by the octave and the fifth, and is rank-2.&lt;br /&gt;
Conventional notation is generated by the octave and the 5th, and the notation (not the tuning itself) is rank-2. Single-pair notation (conventional notation plus ups and downs) is generated by the 8ve, the 5th, and ^1. Enharmonics are like commas in that they reduce the notation's rank by one. So a rank-1 edo like 12 or 19 needs one enharmonic to reduce conventional notation down to rank-1. For 12edo, E = d2, for 19edo, E = dd2.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
A rank-2 pergen is either unsplit, single-split or double-split, and a double-split is either a true double or a false double. A rank-3 pergen can be any of these. Additionally, some rank-3 pergens are triple-splits, which are either true triples or false triples. False triples are like true doubles in that they only require two commas and two pairs. There may be very false triples that can arise from a single comma, who knows? All true triples require triple-pair notation, but some false triples and some double-splits will require triple-pair as well, to avoid awkward enharmonics of a 3rd or more.&lt;br /&gt;
A rank-2 pergen is either unsplit, single-split or double-split, and a double-split is either a true double or a false double. A rank-3 pergen can be any of these. Additionally, some rank-3 pergens are triple-splits, which are either true triples or false triples. False triples are like true doubles in that they only require two commas and two new accidental pairs. (There are even &amp;quot;superfalse&amp;quot; triples that can arise from a single comma, but one of the higher prime exponents in the comma must be at least 12, making it difficult to pump, and not very useful musically.) All true triples require triple-pair notation, but some false triples and some double-splits may use triple-pair as well, to avoid awkward enharmonics of a 3rd or more.&lt;br /&gt;
&lt;br /&gt;
All the previous rank-3 examples had the 2nd generator (gen2 or G2) be a comma, represented by a up or a high. There is no enharmonic for that accidental, just as JI has no enharmonics.&lt;br /&gt;
&lt;br /&gt;
Marvel (2.3.5.7 and 225/224) is (P8, P5, ^1) = unsplit with ups (^1 = 81/80).&lt;br /&gt;
Deep reddish (2.3.5.7 and 50/49) is (P8/2, P5, /1) = half-8ve with highs (/1 = 81/80).&lt;br /&gt;
Triple bluish (2.3.5.7 and 1029/1000) is (P8, P11/3, ^1) = third-11th with ups. G1 =&lt;br /&gt;
Breedsmic (P8, P5/2, ^1) half-5th with ups, G2 = ^1 = 64/63, G1 = /m3 = 49/40, E = &lt;!-- ws:start:WikiTextRawRule:052:``\\`` --&gt;\\&lt;!-- ws:end:WikiTextRawRule:052 --&gt;A1&lt;br /&gt;
&lt;br /&gt;
(2.3.5.7 and 686/675) equates two 5/4's to three 7/6's, and divides 5/4 into three 15/14's. Its pergen is (P8, P5, y3/3) or (P8, P5, (5:4)/3) or maybe (P8, P5, vM3/3). The enharmonic is&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:87:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc17"&gt;&lt;a name="Further Discussion-Pergens and MOS scales"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:87 --&gt;Pergens and MOS scales&lt;/h2&gt;
&lt;br /&gt;
Every rank-2 pergen generates certain MOS scales. This of course depends on the exact size of the generator. In this table, the 5th is assumed to be between 4\7 and 3\5. Sometimes the genchain is too short to generate the multigen. For example, (P8/3, P4/2) [6] has 3 genchains, each with only 2 notes, and thus only 1 step. But it takes 2 steps to make a 4th, so the scale doesn't actually contain any 4ths. Such scales are marked with an asterisk.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
All the previous rank-3 examples had the 2nd generator be a mapping comma, represented by an up. There is no enharmonic for that accidental, just as JI has no enharmonics.&lt;br /&gt;




&lt;table class="wiki_table"&gt;
&lt;table class="wiki_table"&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;th colspan="2"&gt;pergen&lt;br /&gt;
         &lt;th&gt;7-limit temperament&lt;br /&gt;
&lt;/th&gt;
        &lt;th&gt;comma&lt;br /&gt;
&lt;/th&gt;
        &lt;th&gt;pergen&lt;br /&gt;
&lt;/th&gt;
        &lt;th&gt;&lt;br /&gt;
&lt;/th&gt;
        &lt;th&gt;period&lt;br /&gt;
&lt;/th&gt;
&lt;/th&gt;
         &lt;th&gt;MOS scales&lt;br /&gt;
         &lt;th&gt;gen1&lt;br /&gt;
&lt;/th&gt;
        &lt;th&gt;gen2&lt;br /&gt;
&lt;/th&gt;
        &lt;th&gt;^1&lt;br /&gt;
&lt;/th&gt;
        &lt;th&gt;/1&lt;br /&gt;
&lt;/th&gt;
        &lt;th&gt;E&lt;br /&gt;
&lt;/th&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;Marvel&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;225/224&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;(P8, P5, ^1)&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;unsplit with ups&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;P8&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;P5&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;^1 = 81/80&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;---&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;hr /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;Deep reddish&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;50/49&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;(P8/2, P5, ^1)&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;half-8ve with ups&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;/d5 = 7/5&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;P5&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;^1 = 81/80&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;!-- ws:start:WikiTextRawRule:052:``//`` --&gt;//&lt;!-- ws:end:WikiTextRawRule:052 --&gt;d2&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;Triple bluish&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;1029/1000&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;(P8, P11/3, ^1)&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;third-11th with ups&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;P8&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;\d5 = 7/5&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;^1 = 81/80&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;!-- ws:start:WikiTextRawRule:053:``\\\`` --&gt;\\\&lt;!-- ws:end:WikiTextRawRule:053 --&gt;dd3&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;Breedsmic&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;2401/2400&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;(P8, P5/2, ^1)&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;half-5th with ups&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;P8&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;\d4 = 49/40&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;^1 = 64/63&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;!-- ws:start:WikiTextRawRule:054:``\\`` --&gt;\\&lt;!-- ws:end:WikiTextRawRule:054 --&gt;dd3&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
&lt;/table&gt;
 
&lt;br /&gt;
(2.3.5.7 and 686/675) equates two 5/4's to three 7/6's, and divides 5/4 into three 15/14's. Its pergen is (P8, P5, y3/3) or (P8, P5, (5:4)/3) or maybe (P8, P5, vM3/3). The enharmonic is&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:87:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc16"&gt;&lt;a name="Further Discussion-Notating Blackwood-like pergens"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:87 --&gt;Notating Blackwood-like pergens&lt;/h2&gt;
&lt;br /&gt;
A Blackwood-like temperament is rank-2 and equates some number of 5ths to some number of 8ves, thus equating the 5th to some exact fraction of the octave. The generator's ratio contains only 2 and one higher prime. For single-comma temperaments, the generator is simply an octave-reduced prime, with a ratio like 5/4 or 7/4. Multiple-comma temperaments can have split multigens like (8/5)/2 or (25/16)/4.&lt;br /&gt;
&lt;br /&gt;
Such a pergen is in effect multiple copies of an edo. Its notation can be based on the edo's notation, expanded with an additional microtonal accidental pair.&lt;br /&gt;
&lt;br /&gt;
Blackwood 5edo+y perchain: D E=F G A B=C D (E = m2), genchain: ... Gb^^ Bb^ D F#v A#vv... (^1 = 81/80, no E)&lt;br /&gt;
12edo+j perchain: D D#=Eb E F F#=Gb... C#=Db D (E = d2), genchain = C F^ Bb^^ (^1 = 33/32, no E)&lt;br /&gt;
17edo+y perchain: C C^ Dv D... (E = vm2), genchain: same as blackwood, but with / and \&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:89:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc17"&gt;&lt;a name="Further Discussion-Pergens and MOS scales"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:89 --&gt;Pergens and MOS scales&lt;/h2&gt;
&lt;br /&gt;
Every rank-2 pergen generates certain MOS scales. This of course depends on the exact size of the generator. In this table, the 5th is assumed to be between 4\7 and 3\5. Sometimes the genchain is too short to generate the multigen. For example, (P8/3, P4/2) [6] has 3 genchains, each with only 2 notes, and thus only 1 step. But it takes 2 steps to make a 4th, so the scale doesn't actually contain any 4ths. Such scales are marked with an asterisk.&lt;br /&gt;
&lt;br /&gt;
 
 
&lt;table class="wiki_table"&gt;
    &lt;tr&gt;
        &lt;th colspan="2"&gt;pergen&lt;br /&gt;
&lt;/th&gt;
&lt;/th&gt;
         &lt;th&gt;of 5-12 notes&lt;br /&gt;
         &lt;th colspan="2"&gt;MOS scales of 5-12 notes&lt;br /&gt;
&lt;/th&gt;
&lt;/th&gt;
         &lt;th&gt;&lt;br /&gt;
         &lt;th&gt;&lt;br /&gt;
Line 3,916: Line 4,024:
&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:89:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc18"&gt;&lt;a name="Further Discussion-Pergens and EDOs"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:89 --&gt;Pergens and EDOs&lt;/h2&gt;
&lt;!-- ws:start:WikiTextHeadingRule:91:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc18"&gt;&lt;a name="Further Discussion-Pergens and EDOs"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:91 --&gt;Pergens and EDOs&lt;/h2&gt;
  &lt;br /&gt;
  &lt;br /&gt;
Pergens have much in common with edos. Pergens of rank-2 assume only primes 2 and 3, edos assume only prime 2. There are an infinite number of edos, but fewer than a hundred have been explored. There are an infinite number of pergens, but fewer than a hundred will suffice most composers.&lt;br /&gt;
Pergens have much in common with edos. Pergens of rank-2 assume only primes 2 and 3, edos assume only prime 2. There are an infinite number of edos, but fewer than a hundred have been explored. There are an infinite number of pergens, but fewer than a hundred will suffice most composers.&lt;br /&gt;
Line 4,224: Line 4,332:
&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:91:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc19"&gt;&lt;a name="Further Discussion-Supplemental materials"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:91 --&gt;Supplemental materials&lt;/h2&gt;
&lt;!-- ws:start:WikiTextHeadingRule:93:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc19"&gt;&lt;a name="Further Discussion-Supplemental materials"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:93 --&gt;Supplemental materials&lt;/h2&gt;
  &lt;br /&gt;
  &lt;br /&gt;
This PDF is a rank-2 notation guide that shows the full lattice for the first 15 pergens, up through the third-splits block. It includes alternate enharmonics for many pergens.&lt;br /&gt;
This PDF is a rank-2 notation guide that shows the full lattice for the first 15 pergens, up through the third-splits block. It includes alternate enharmonics for many pergens.&lt;br /&gt;
&lt;!-- ws:start:WikiTextUrlRule:5274:http://www.tallkite.com/misc_files/pergens.pdf --&gt;&lt;a class="wiki_link_ext" href="http://www.tallkite.com/misc_files/pergens.pdf" rel="nofollow"&gt;http://www.tallkite.com/misc_files/pergens.pdf&lt;/a&gt;&lt;!-- ws:end:WikiTextUrlRule:5274 --&gt;&lt;br /&gt;
&lt;!-- ws:start:WikiTextUrlRule:5430:http://www.tallkite.com/misc_files/pergens.pdf --&gt;&lt;a class="wiki_link_ext" href="http://www.tallkite.com/misc_files/pergens.pdf" rel="nofollow"&gt;http://www.tallkite.com/misc_files/pergens.pdf&lt;/a&gt;&lt;!-- ws:end:WikiTextUrlRule:5430 --&gt;&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
Alt-pergenLister lists out thousands of pergens, and suggests periods, generators and enharmonics for each one. Alternate enharmonics are not listed, but single-pair notation for false-double pergens is. It can also list only those pergens supported by a specific edo. Written in Jesusonic, runs inside Reaper.&lt;br /&gt;
Alt-pergenLister lists out thousands of pergens, and suggests periods, generators and enharmonics for each one. Alternate enharmonics are not listed, but single-pair notation for false-double pergens is. It can also list only those pergens supported by a specific edo. Written in Jesusonic, runs inside Reaper.&lt;br /&gt;
&lt;!-- ws:start:WikiTextUrlRule:5275:http://www.tallkite.com/misc_files/alt-pergenLister.zip --&gt;&lt;a class="wiki_link_ext" href="http://www.tallkite.com/misc_files/alt-pergenLister.zip" rel="nofollow"&gt;http://www.tallkite.com/misc_files/alt-pergenLister.zip&lt;/a&gt;&lt;!-- ws:end:WikiTextUrlRule:5275 --&gt;&lt;br /&gt;
&lt;!-- ws:start:WikiTextUrlRule:5431:http://www.tallkite.com/misc_files/alt-pergenLister.zip --&gt;&lt;a class="wiki_link_ext" href="http://www.tallkite.com/misc_files/alt-pergenLister.zip" rel="nofollow"&gt;http://www.tallkite.com/misc_files/alt-pergenLister.zip&lt;/a&gt;&lt;!-- ws:end:WikiTextUrlRule:5431 --&gt;&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
Screenshot of the first 38 pergens:&lt;br /&gt;
Screenshot of the first 38 pergens:&lt;br /&gt;
&lt;!-- ws:start:WikiTextLocalImageRule:3080:&amp;lt;img src=&amp;quot;/file/view/alt-pergenLister.png/624838213/704x460/alt-pergenLister.png&amp;quot; alt=&amp;quot;&amp;quot; title=&amp;quot;&amp;quot; style=&amp;quot;height: 460px; width: 704px;&amp;quot; /&amp;gt; --&gt;&lt;img src="/file/view/alt-pergenLister.png/624838213/704x460/alt-pergenLister.png" alt="alt-pergenLister.png" title="alt-pergenLister.png" style="height: 460px; width: 704px;" /&gt;&lt;!-- ws:end:WikiTextLocalImageRule:3080 --&gt;&lt;br /&gt;
&lt;!-- ws:start:WikiTextLocalImageRule:3193:&amp;lt;img src=&amp;quot;/file/view/alt-pergenLister.png/624838213/704x460/alt-pergenLister.png&amp;quot; alt=&amp;quot;&amp;quot; title=&amp;quot;&amp;quot; style=&amp;quot;height: 460px; width: 704px;&amp;quot; /&amp;gt; --&gt;&lt;img src="/file/view/alt-pergenLister.png/624838213/704x460/alt-pergenLister.png" alt="alt-pergenLister.png" title="alt-pergenLister.png" style="height: 460px; width: 704px;" /&gt;&lt;!-- ws:end:WikiTextLocalImageRule:3193 --&gt;&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
Listing all valid pergens is not a trivial task, like listing all valid edos or all valid MOS scales. Not all combinations of octave fractions and multigen fractions make a valid pergen. The search for rank-2 pergens can be done by looping through all possible square mappings [(x, y), (0, z)], and using the formula (P8/x, (i·z - y, x) / xz). While x is always positive and z is always nonzero, y can take on any value. For any x and z, y can be constrained to produce a reasonable cents value for 3/1. Let T be the tempered twefth 3/1. The mapping says T = y·P + z·G = y·P8/x + z·G. Thus y = x·(T/P8 - z·G/P8). We adopt the convention that G is less than half an octave. We constrain T so that the 5th is between 600¢ and 800¢, which certainly includes anything that sounds like a 5th. Thus T is between 3/2 and 5/3 of an octave. We assume that if the octave is stretched, the ranges of T and G will be stretched along with it. The outer ranges of y can now be computed, using the floor function to round down to the nearest integer, and the ceiling function to round up:&lt;br /&gt;
Listing all valid pergens is not a trivial task, like listing all valid edos or all valid MOS scales. Not all combinations of octave fractions and multigen fractions make a valid pergen. The search for rank-2 pergens can be done by looping through all possible square mappings [(x, y), (0, z)], and using the formula (P8/x, (i·z - y, x) / xz). While x is always positive and z is always nonzero, y can take on any value. For any x and z, y can be constrained to produce a reasonable cents value for 3/1. Let T be the tempered twefth 3/1. The mapping says T = y·P + z·G = y·P8/x + z·G. Thus y = x·(T/P8 - z·G/P8). We adopt the convention that G is less than half an octave. We constrain T so that the 5th is between 600¢ and 800¢, which certainly includes anything that sounds like a 5th. Thus T is between 3/2 and 5/3 of an octave. We assume that if the octave is stretched, the ranges of T and G will be stretched along with it. The outer ranges of y can now be computed, using the floor function to round down to the nearest integer, and the ceiling function to round up:&lt;br /&gt;
Line 4,248: Line 4,356:
&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:93:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc20"&gt;&lt;a name="Further Discussion-Various proofs (unfinished)"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:93 --&gt;Various proofs (unfinished)&lt;/h2&gt;
&lt;!-- ws:start:WikiTextHeadingRule:95:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc20"&gt;&lt;a name="Further Discussion-Various proofs (unfinished)"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:95 --&gt;Various proofs (unfinished)&lt;/h2&gt;
  &lt;br /&gt;
  &lt;br /&gt;
Given:&lt;br /&gt;
Given:&lt;br /&gt;
Line 4,307: Line 4,415:
&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:95:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc21"&gt;&lt;a name="Further Discussion-Miscellaneous Notes"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:95 --&gt;Miscellaneous Notes&lt;/h2&gt;
&lt;!-- ws:start:WikiTextHeadingRule:97:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc21"&gt;&lt;a name="Further Discussion-Miscellaneous Notes"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:97 --&gt;Miscellaneous Notes&lt;/h2&gt;
  &lt;br /&gt;
  &lt;br /&gt;
&lt;u&gt;&lt;strong&gt;Combining pergens&lt;/strong&gt;&lt;/u&gt;&lt;br /&gt;
&lt;u&gt;&lt;strong&gt;Combining pergens&lt;/strong&gt;&lt;/u&gt;&lt;br /&gt;