Kite's thoughts on pergens: Difference between revisions

Wikispaces>TallKite
**Imported revision 626402585 - Original comment: **
Wikispaces>TallKite
**Imported revision 626439971 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:TallKite|TallKite]] and made on <tt>2018-02-14 07:15:48 UTC</tt>.<br>
: This revision was by author [[User:TallKite|TallKite]] and made on <tt>2018-02-14 21:17:15 UTC</tt>.<br>
: The original revision id was <tt>626402585</tt>.<br>
: The original revision id was <tt>626439971</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
Line 45: Line 45:
The multi-gen is usually some voicing of the 4th or 5th, but can be any 3-limit interval, as in the second to last example. The color name indicates the amount of splitting: deep (double) splits something into two parts, triple into three parts, etc. For a comma with monzo (a,b,c,d...), the color depth is GCD (c,d...).
The multi-gen is usually some voicing of the 4th or 5th, but can be any 3-limit interval, as in the second to last example. The color name indicates the amount of splitting: deep (double) splits something into two parts, triple into three parts, etc. For a comma with monzo (a,b,c,d...), the color depth is GCD (c,d...).


For non-standard prime groups, the period uses the first prime only, and the multigen usually (see the 1st example in the Derivation section) uses the first two primes only. [[Kite's color notation|Color notation]] can be used to indicate higher primes. 5/4 = y3 = yellow 3rd, 7/4 = b7 = blue 7th, and 11/8 = j4 = jade 4th. 2.5.7 with 50/49 tempered out is (P8/2, y3) = half-8ve, yellow-3rd. Colors can be avoided with (P8/2, M3).
Rank-3 pergens have three intervals, period, gen1 and gen2, any or all of which may be split. The pergen always uses at least one higher prime. [[xenharmonic/Kite's color notation|Color notation]] (or any HEWM notation) can be used to indicate higher primes. Monzos of the form (a,b,1) = yellow, (a,b,-1) = green, (a,b,0,1) = blue, (a,b,0,-1) = red, (a,b,0,0,1) = jade, (a,b,0,0,-1) = amber, and (a,b) = white. Examples: 5/4 = y3 = yellow 3rd, 7/5 = bg5 = blue-green 5th or bluish 5th, etc.  


Rank-3 pergens have three intervals, period, gen1 and gen2, any or all of which may be split. The unsplit 2.3.5 subgroup's pergen could be (P8, P5, y3). However, colors can be avoided by reducing gen2 to g1 = 81/80. Since 81/80 maps to a perfect unison, it can be notated with only an up symbol, and we have (P8, P5, ^1) = unsplit with ups. But if either the period or gen1 is split, ups and downs will be needed to notate the fractional intervals, and an additional pair of accidentals must be used for gen2. One possibility is **highs and lows**, written / and \.
For example, marvel (2.3.5.7 and 225/224) has an unsplit pergen of (P8, P5, y3). Often colors can be replaced with ups and downs. Here, gen2 can be reduced to g1 = 81/80. Since 81/80 maps to a perfect unison, it can be notated with only an up symbol, and we have (P8, P5, ^1) = unsplit with ups.


Examples: Marvel (2.3.5.7 and 225/224) is (P8, P5, ^1) = unsplit with ups (^1 = 81/80). Deep reddish (2.3.5.7 and 50/49) is (P8/2, P5, /1) = half-8ve with highs (/1 = 81/80). Triple bluish (2.3.5.7 and 1029/1000) is (P8, P11/3, ^1) = third-11th with ups.
More examples: Triple bluish (2.3.5.7 with 1029/1000 tempered out) is (P8, P11/3, ^1) = third-11th with ups. Deep reddish (2.3.5.7 and 50/49) is (P8/2, P5, ^1) = half-8ve with ups (^1 = 81/80). However, deep reddish minus white (2.5.7 and 50/49) is (P8/2, M3) = half-8ve, major 3rd.  


A rank-4 temperament has a pergen of four intervals, rank-5 has five intervals, etc. A rank-1 temperament could have a pergen of one, such as (P8/12) for 12-edo or (P12/13) for 13-ed3, but there's no particular reason to do so. In fact, edos and edonois are simply rank-1 pergens, and what the concept of edos or edonois does for rank-1 temperaments, the concept of pergens does for temperaments of rank 2 or higher.
A rank-4 temperament has a pergen of four intervals, rank-5 has five intervals, etc. A rank-1 temperament could have a pergen of one, such as (P8/12) for 12-edo or (P12/13) for 13-ed3, but there's no particular reason to do so. In fact, edos and edonois are simply rank-1 pergens, and what the concept of edos or edonois does for rank-1 temperaments, the concept of pergens does for temperaments of rank 2 or higher.


In keeping with the higher-prime-agnostic nature of pergens, untempered just intonation has a pergen of the octave, the fifth, and a list of commas, each containing only one higher prime: (P8, P5, 81:80, 64:63, ...). The higher prime's exponent in the comma's monzo must be ±1. The commas can be replaced with microtonal accidentals: (P8, P5, ^1, /1,...).
In keeping with the higher-prime-agnostic nature of pergens, untempered just intonation has a pergen of the octave, the fifth, and a list of commas, each containing only one higher prime. The higher prime's exponent in the comma's monzo must be ±1, and the comma should map to P1, e.g. 81/80 or 64/63. The commas are notated with microtonal accidentals (P8, P5, ^1, /1,...) or colors (P8, P5, g1, r1,...).




Line 135: Line 135:
Below is a table that lists all the rank-2 pergens that contain primes 2 and 3, up to third-splits. They are grouped into blocks by the size of the larger splitting fraction, and grouped within each block into sections by the smaller fraction. Most sections have two halves. In the first half, the octave has the larger fraction, in the second, the multi-gen does. Within each half, the pergens are sorted by multigen size. This represents a natural ordering of rank-2 pergens.
Below is a table that lists all the rank-2 pergens that contain primes 2 and 3, up to third-splits. They are grouped into blocks by the size of the larger splitting fraction, and grouped within each block into sections by the smaller fraction. Most sections have two halves. In the first half, the octave has the larger fraction, in the second, the multi-gen does. Within each half, the pergens are sorted by multigen size. This represents a natural ordering of rank-2 pergens.


The enharmonic interval, or more briefly the **enharmonic**, can be added to or subtracted from any note (or interval), renaming it, but not changing the pitch of the note (or width of the interval). It's analogous to the dim 2nd in 12-edo, which equates C# with Db, and A4 with d5. In a single-comma temperament, the comma usually maps to the pergen's enharmonic. This interval is very important. Everything about the notation can be deduced from the pergen and the enharmonic.
The enharmonic interval, or more briefly the **enharmonic**, can be added to or subtracted from any note (or interval), renaming it, but not changing the pitch of the note (or width of the interval). It's analogous to the dim 2nd in 12-edo, which equates C# with Db, and A4 with d5. In a single-comma temperament, the comma usually maps to the pergen's enharmonic. The pergen and the enharmonic together define the notation.


The **genchain** (chain of generators) in the table is only a short section of the full genchain.
The **genchain** (chain of generators) in the table is only a short section of the full genchain.
C - G implies ...Eb Bb F C G D A E B F# C#...
&lt;span style="display: block; text-align: center;"&gt;C - G implies ...Eb Bb F C G D A E B F# C#...&lt;/span&gt;&lt;span style="display: block; text-align: center;"&gt;C - Eb^=Ev - G implies ...F -- Ab^=Av -- C -- Eb^=Ev -- G -- Bb^=Bv -- D...&lt;/span&gt;
C - Eb^=Ev - G implies ...F -- Ab^=Av -- C -- Eb^=Ev -- G -- Bb^=Bv -- D -- F^=F#v -- A -- C^=C#v -- E...
If the octave is split, the table has a **perchain** ("peer-chain", chain of periods) that shows the octave: C -- F#v=Gb^ -- C
If the octave is split, the table has a **perchain** ("peer-chain", chain of periods) that shows the octave: C -- F#v=Gb^ -- C


Line 338: Line 337:


For a pergen (P8/m, M/n), let x be any number that divides m, R be any 3-limit ratio, and z be any integer. The interval z·P8 ± x·R splits into x parts. Let y be any number that divides n, the interval z·M ± y·R splits into y parts. If x divides both m and n, the interval z·P8 + z'·M ± x·R splits into x parts (z' is any integer).
For a pergen (P8/m, M/n), let x be any number that divides m, R be any 3-limit ratio, and z be any integer. The interval z·P8 ± x·R splits into x parts. Let y be any number that divides n, the interval z·M ± y·R splits into y parts. If x divides both m and n, the interval z·P8 + z'·M ± x·R splits into x parts (z' is any integer).


==Singles and doubles==  
==Singles and doubles==  
Line 567: Line 565:
12edo+j perchain: D D#=Eb E F F#=Gb... C#=Db D (E = d2), genchain = C F^ Bb^^ (^1 = 33/32, no E)
12edo+j perchain: D D#=Eb E F F#=Gb... C#=Db D (E = d2), genchain = C F^ Bb^^ (^1 = 33/32, no E)
17edo+y perchain: C C^ Dv D... (E = dd3, E' = vm2 = vvA1), genchain: same as blackwood, but with / and \
17edo+y perchain: C C^ Dv D... (E = dd3, E' = vm2 = vvA1), genchain: same as blackwood, but with / and \
==Notating arbitrary P and G tunings*==
Given only the period as some fraction of the octave, and the generator's cents, it's often possible to work backwards and find an appropriate multigen.


==Pergens and MOS scales==  
==Pergens and MOS scales==  
Line 713: Line 715:
||= (P8/3, P12/4) ||= third-8ve, quarter-12th ||= 15, 18b, 30* ||
||= (P8/3, P12/4) ||= third-8ve, quarter-12th ||= 15, 18b, 30* ||
||= (P8/4, P4/4) ||= quarter-everything ||= 20, 28 ||
||= (P8/4, P4/4) ||= quarter-everything ||= 20, 28 ||
See the next section for examples of which pergens are supported by a specific edo.
==Supplemental materials*==


==Supplemental materials==
needs more screenshots, including 12-edo's pergens
needs pergen squares picture


This PDF is a rank-2 notation guide that shows the full lattice for the first 15 pergens, up through the third-splits block. It includes alternate enharmonics for many pergens.
This PDF is a rank-2 notation guide that shows the full lattice for the first 15 pergens, up through the third-splits block. It includes alternate enharmonics for many pergens.
Line 874: Line 880:
<h4>Original HTML content:</h4>
<h4>Original HTML content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;pergen&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;!-- ws:start:WikiTextHeadingRule:56:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc0"&gt;&lt;!-- ws:end:WikiTextHeadingRule:56 --&gt; &lt;/h1&gt;
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;pergen&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;!-- ws:start:WikiTextHeadingRule:56:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc0"&gt;&lt;!-- ws:end:WikiTextHeadingRule:56 --&gt; &lt;/h1&gt;
  &lt;!-- ws:start:WikiTextTocRule:102:&amp;lt;img id=&amp;quot;wikitext@@toc@@normal&amp;quot; class=&amp;quot;WikiMedia WikiMediaToc&amp;quot; title=&amp;quot;Table of Contents&amp;quot; src=&amp;quot;/site/embedthumbnail/toc/normal?w=225&amp;amp;h=100&amp;quot;/&amp;gt; --&gt;&lt;div id="toc"&gt;&lt;h1 class="nopad"&gt;Table of Contents&lt;/h1&gt;&lt;!-- ws:end:WikiTextTocRule:102 --&gt;&lt;!-- ws:start:WikiTextTocRule:103: --&gt;&lt;div style="margin-left: 1em;"&gt;&lt;a href="#toc0"&gt; &lt;/a&gt;&lt;/div&gt;
  &lt;!-- ws:start:WikiTextTocRule:104:&amp;lt;img id=&amp;quot;wikitext@@toc@@normal&amp;quot; class=&amp;quot;WikiMedia WikiMediaToc&amp;quot; title=&amp;quot;Table of Contents&amp;quot; src=&amp;quot;/site/embedthumbnail/toc/normal?w=225&amp;amp;h=100&amp;quot;/&amp;gt; --&gt;&lt;div id="toc"&gt;&lt;h1 class="nopad"&gt;Table of Contents&lt;/h1&gt;&lt;!-- ws:end:WikiTextTocRule:104 --&gt;&lt;!-- ws:start:WikiTextTocRule:105: --&gt;&lt;div style="margin-left: 1em;"&gt;&lt;a href="#toc0"&gt; &lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:103 --&gt;&lt;!-- ws:start:WikiTextTocRule:104: --&gt;&lt;div style="margin-left: 1em;"&gt;&lt;a href="#Definition"&gt;Definition&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:105 --&gt;&lt;!-- ws:start:WikiTextTocRule:106: --&gt;&lt;div style="margin-left: 1em;"&gt;&lt;a href="#Definition"&gt;Definition&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:104 --&gt;&lt;!-- ws:start:WikiTextTocRule:105: --&gt;&lt;div style="margin-left: 1em;"&gt;&lt;a href="#Derivation"&gt;Derivation&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:106 --&gt;&lt;!-- ws:start:WikiTextTocRule:107: --&gt;&lt;div style="margin-left: 1em;"&gt;&lt;a href="#Derivation"&gt;Derivation&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:105 --&gt;&lt;!-- ws:start:WikiTextTocRule:106: --&gt;&lt;div style="margin-left: 1em;"&gt;&lt;a href="#Applications"&gt;Applications&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:107 --&gt;&lt;!-- ws:start:WikiTextTocRule:108: --&gt;&lt;div style="margin-left: 1em;"&gt;&lt;a href="#Applications"&gt;Applications&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:106 --&gt;&lt;!-- ws:start:WikiTextTocRule:107: --&gt;&lt;div style="margin-left: 2em;"&gt;&lt;a href="#Applications-Tipping points"&gt;Tipping points&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:108 --&gt;&lt;!-- ws:start:WikiTextTocRule:109: --&gt;&lt;div style="margin-left: 2em;"&gt;&lt;a href="#Applications-Tipping points"&gt;Tipping points&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:107 --&gt;&lt;!-- ws:start:WikiTextTocRule:108: --&gt;&lt;div style="margin-left: 1em;"&gt;&lt;a href="#Further Discussion"&gt;Further Discussion&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:109 --&gt;&lt;!-- ws:start:WikiTextTocRule:110: --&gt;&lt;div style="margin-left: 1em;"&gt;&lt;a href="#Further Discussion"&gt;Further Discussion&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:108 --&gt;&lt;!-- ws:start:WikiTextTocRule:109: --&gt;&lt;div style="margin-left: 2em;"&gt;&lt;a href="#Further Discussion-Naming very large intervals"&gt;Naming very large intervals&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:110 --&gt;&lt;!-- ws:start:WikiTextTocRule:111: --&gt;&lt;div style="margin-left: 2em;"&gt;&lt;a href="#Further Discussion-Naming very large intervals"&gt;Naming very large intervals&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:109 --&gt;&lt;!-- ws:start:WikiTextTocRule:110: --&gt;&lt;div style="margin-left: 2em;"&gt;&lt;a href="#Further Discussion-Secondary splits"&gt;Secondary splits&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:111 --&gt;&lt;!-- ws:start:WikiTextTocRule:112: --&gt;&lt;div style="margin-left: 2em;"&gt;&lt;a href="#Further Discussion-Secondary splits"&gt;Secondary splits&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:110 --&gt;&lt;!-- ws:start:WikiTextTocRule:111: --&gt;&lt;div style="margin-left: 2em;"&gt;&lt;a href="#Further Discussion-Singles and doubles"&gt;Singles and doubles&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:112 --&gt;&lt;!-- ws:start:WikiTextTocRule:113: --&gt;&lt;div style="margin-left: 2em;"&gt;&lt;a href="#Further Discussion-Singles and doubles"&gt;Singles and doubles&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:111 --&gt;&lt;!-- ws:start:WikiTextTocRule:112: --&gt;&lt;div style="margin-left: 2em;"&gt;&lt;a href="#Further Discussion-Finding an example temperament"&gt;Finding an example temperament&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:113 --&gt;&lt;!-- ws:start:WikiTextTocRule:114: --&gt;&lt;div style="margin-left: 2em;"&gt;&lt;a href="#Further Discussion-Finding an example temperament"&gt;Finding an example temperament&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:112 --&gt;&lt;!-- ws:start:WikiTextTocRule:113: --&gt;&lt;div style="margin-left: 2em;"&gt;&lt;a href="#Further Discussion-Ratio and cents of the accidentals"&gt;Ratio and cents of the accidentals&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:114 --&gt;&lt;!-- ws:start:WikiTextTocRule:115: --&gt;&lt;div style="margin-left: 2em;"&gt;&lt;a href="#Further Discussion-Ratio and cents of the accidentals"&gt;Ratio and cents of the accidentals&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:113 --&gt;&lt;!-- ws:start:WikiTextTocRule:114: --&gt;&lt;div style="margin-left: 2em;"&gt;&lt;a href="#Further Discussion-Finding a notation for a pergen"&gt;Finding a notation for a pergen&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:115 --&gt;&lt;!-- ws:start:WikiTextTocRule:116: --&gt;&lt;div style="margin-left: 2em;"&gt;&lt;a href="#Further Discussion-Finding a notation for a pergen"&gt;Finding a notation for a pergen&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:114 --&gt;&lt;!-- ws:start:WikiTextTocRule:115: --&gt;&lt;div style="margin-left: 2em;"&gt;&lt;a href="#Further Discussion-Alternate enharmonics"&gt;Alternate enharmonics&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:116 --&gt;&lt;!-- ws:start:WikiTextTocRule:117: --&gt;&lt;div style="margin-left: 2em;"&gt;&lt;a href="#Further Discussion-Alternate enharmonics"&gt;Alternate enharmonics&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:115 --&gt;&lt;!-- ws:start:WikiTextTocRule:116: --&gt;&lt;div style="margin-left: 2em;"&gt;&lt;a href="#Further Discussion-Chord names and scale names"&gt;Chord names and scale names&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:117 --&gt;&lt;!-- ws:start:WikiTextTocRule:118: --&gt;&lt;div style="margin-left: 2em;"&gt;&lt;a href="#Further Discussion-Chord names and scale names"&gt;Chord names and scale names&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:116 --&gt;&lt;!-- ws:start:WikiTextTocRule:117: --&gt;&lt;div style="margin-left: 2em;"&gt;&lt;a href="#Further Discussion-Tipping points and sweet spots"&gt;Tipping points and sweet spots&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:118 --&gt;&lt;!-- ws:start:WikiTextTocRule:119: --&gt;&lt;div style="margin-left: 2em;"&gt;&lt;a href="#Further Discussion-Tipping points and sweet spots"&gt;Tipping points and sweet spots&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:117 --&gt;&lt;!-- ws:start:WikiTextTocRule:118: --&gt;&lt;div style="margin-left: 2em;"&gt;&lt;a href="#Further Discussion-Notating unsplit pergens"&gt;Notating unsplit pergens&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:119 --&gt;&lt;!-- ws:start:WikiTextTocRule:120: --&gt;&lt;div style="margin-left: 2em;"&gt;&lt;a href="#Further Discussion-Notating unsplit pergens"&gt;Notating unsplit pergens&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:118 --&gt;&lt;!-- ws:start:WikiTextTocRule:119: --&gt;&lt;div style="margin-left: 2em;"&gt;&lt;a href="#Further Discussion-Notating rank-3 pergens *"&gt;Notating rank-3 pergens *&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:120 --&gt;&lt;!-- ws:start:WikiTextTocRule:121: --&gt;&lt;div style="margin-left: 2em;"&gt;&lt;a href="#Further Discussion-Notating rank-3 pergens *"&gt;Notating rank-3 pergens *&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:119 --&gt;&lt;!-- ws:start:WikiTextTocRule:120: --&gt;&lt;div style="margin-left: 2em;"&gt;&lt;a href="#Further Discussion-Notating Blackwood-like pergens*"&gt;Notating Blackwood-like pergens*&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:121 --&gt;&lt;!-- ws:start:WikiTextTocRule:122: --&gt;&lt;div style="margin-left: 2em;"&gt;&lt;a href="#Further Discussion-Notating Blackwood-like pergens*"&gt;Notating Blackwood-like pergens*&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:120 --&gt;&lt;!-- ws:start:WikiTextTocRule:121: --&gt;&lt;div style="margin-left: 2em;"&gt;&lt;a href="#Further Discussion-Pergens and MOS scales"&gt;Pergens and MOS scales&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:122 --&gt;&lt;!-- ws:start:WikiTextTocRule:123: --&gt;&lt;div style="margin-left: 2em;"&gt;&lt;a href="#Further Discussion-Notating arbitrary P and G tunings*"&gt;Notating arbitrary P and G tunings*&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:121 --&gt;&lt;!-- ws:start:WikiTextTocRule:122: --&gt;&lt;div style="margin-left: 2em;"&gt;&lt;a href="#Further Discussion-Pergens and EDOs"&gt;Pergens and EDOs&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:123 --&gt;&lt;!-- ws:start:WikiTextTocRule:124: --&gt;&lt;div style="margin-left: 2em;"&gt;&lt;a href="#Further Discussion-Pergens and MOS scales"&gt;Pergens and MOS scales&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:122 --&gt;&lt;!-- ws:start:WikiTextTocRule:123: --&gt;&lt;div style="margin-left: 2em;"&gt;&lt;a href="#Further Discussion-Supplemental materials"&gt;Supplemental materials&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:124 --&gt;&lt;!-- ws:start:WikiTextTocRule:125: --&gt;&lt;div style="margin-left: 2em;"&gt;&lt;a href="#Further Discussion-Pergens and EDOs"&gt;Pergens and EDOs&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:123 --&gt;&lt;!-- ws:start:WikiTextTocRule:124: --&gt;&lt;div style="margin-left: 2em;"&gt;&lt;a href="#Further Discussion-Various proofs (unfinished)"&gt;Various proofs (unfinished)&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:125 --&gt;&lt;!-- ws:start:WikiTextTocRule:126: --&gt;&lt;div style="margin-left: 2em;"&gt;&lt;a href="#Further Discussion-Supplemental materials*"&gt;Supplemental materials*&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:124 --&gt;&lt;!-- ws:start:WikiTextTocRule:125: --&gt;&lt;div style="margin-left: 2em;"&gt;&lt;a href="#Further Discussion-Miscellaneous Notes"&gt;Miscellaneous Notes&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:126 --&gt;&lt;!-- ws:start:WikiTextTocRule:127: --&gt;&lt;div style="margin-left: 2em;"&gt;&lt;a href="#Further Discussion-Various proofs (unfinished)"&gt;Various proofs (unfinished)&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:125 --&gt;&lt;!-- ws:start:WikiTextTocRule:126: --&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:127 --&gt;&lt;!-- ws:start:WikiTextTocRule:128: --&gt;&lt;div style="margin-left: 2em;"&gt;&lt;a href="#Further Discussion-Miscellaneous Notes"&gt;Miscellaneous Notes&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:126 --&gt;&lt;!-- ws:start:WikiTextHeadingRule:58:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc1"&gt;&lt;a name="Definition"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:58 --&gt;&lt;u&gt;&lt;strong&gt;Definition&lt;/strong&gt;&lt;/u&gt;&lt;/h1&gt;
&lt;!-- ws:end:WikiTextTocRule:128 --&gt;&lt;!-- ws:start:WikiTextTocRule:129: --&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:129 --&gt;&lt;!-- ws:start:WikiTextHeadingRule:58:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc1"&gt;&lt;a name="Definition"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:58 --&gt;&lt;u&gt;&lt;strong&gt;Definition&lt;/strong&gt;&lt;/u&gt;&lt;/h1&gt;
  &lt;br /&gt;
  &lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
Line 1,138: Line 1,145:
The multi-gen is usually some voicing of the 4th or 5th, but can be any 3-limit interval, as in the second to last example. The color name indicates the amount of splitting: deep (double) splits something into two parts, triple into three parts, etc. For a comma with monzo (a,b,c,d...), the color depth is GCD (c,d...).&lt;br /&gt;
The multi-gen is usually some voicing of the 4th or 5th, but can be any 3-limit interval, as in the second to last example. The color name indicates the amount of splitting: deep (double) splits something into two parts, triple into three parts, etc. For a comma with monzo (a,b,c,d...), the color depth is GCD (c,d...).&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
For non-standard prime groups, the period uses the first prime only, and the multigen usually (see the 1st example in the Derivation section) uses the first two primes only. &lt;a class="wiki_link" href="/Kite%27s%20color%20notation"&gt;Color notation&lt;/a&gt; can be used to indicate higher primes. 5/4 = y3 = yellow 3rd, 7/4 = b7 = blue 7th, and 11/8 = j4 = jade 4th. 2.5.7 with 50/49 tempered out is (P8/2, y3) = half-8ve, yellow-3rd. Colors can be avoided with (P8/2, M3).&lt;br /&gt;
Rank-3 pergens have three intervals, period, gen1 and gen2, any or all of which may be split. The pergen always uses at least one higher prime. &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/Kite%27s%20color%20notation"&gt;Color notation&lt;/a&gt; (or any HEWM notation) can be used to indicate higher primes. Monzos of the form (a,b,1) = yellow, (a,b,-1) = green, (a,b,0,1) = blue, (a,b,0,-1) = red, (a,b,0,0,1) = jade, (a,b,0,0,-1) = amber, and (a,b) = white. Examples: 5/4 = y3 = yellow 3rd, 7/5 = bg5 = blue-green 5th or bluish 5th, etc. &lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
Rank-3 pergens have three intervals, period, gen1 and gen2, any or all of which may be split. The unsplit 2.3.5 subgroup's pergen could be (P8, P5, y3). However, colors can be avoided by reducing gen2 to g1 = 81/80. Since 81/80 maps to a perfect unison, it can be notated with only an up symbol, and we have (P8, P5, ^1) = unsplit with ups. But if either the period or gen1 is split, ups and downs will be needed to notate the fractional intervals, and an additional pair of accidentals must be used for gen2. One possibility is &lt;strong&gt;highs and lows&lt;/strong&gt;, written / and \.&lt;br /&gt;
For example, marvel (2.3.5.7 and 225/224) has an unsplit pergen of (P8, P5, y3). Often colors can be replaced with ups and downs. Here, gen2 can be reduced to g1 = 81/80. Since 81/80 maps to a perfect unison, it can be notated with only an up symbol, and we have (P8, P5, ^1) = unsplit with ups.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
Examples: Marvel (2.3.5.7 and 225/224) is (P8, P5, ^1) = unsplit with ups (^1 = 81/80). Deep reddish (2.3.5.7 and 50/49) is (P8/2, P5, /1) = half-8ve with highs (/1 = 81/80). Triple bluish (2.3.5.7 and 1029/1000) is (P8, P11/3, ^1) = third-11th with ups.&lt;br /&gt;
More examples: Triple bluish (2.3.5.7 with 1029/1000 tempered out) is (P8, P11/3, ^1) = third-11th with ups. Deep reddish (2.3.5.7 and 50/49) is (P8/2, P5, ^1) = half-8ve with ups (^1 = 81/80). However, deep reddish minus white (2.5.7 and 50/49) is (P8/2, M3) = half-8ve, major 3rd. &lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
A rank-4 temperament has a pergen of four intervals, rank-5 has five intervals, etc. A rank-1 temperament could have a pergen of one, such as (P8/12) for 12-edo or (P12/13) for 13-ed3, but there's no particular reason to do so. In fact, edos and edonois are simply rank-1 pergens, and what the concept of edos or edonois does for rank-1 temperaments, the concept of pergens does for temperaments of rank 2 or higher.&lt;br /&gt;
A rank-4 temperament has a pergen of four intervals, rank-5 has five intervals, etc. A rank-1 temperament could have a pergen of one, such as (P8/12) for 12-edo or (P12/13) for 13-ed3, but there's no particular reason to do so. In fact, edos and edonois are simply rank-1 pergens, and what the concept of edos or edonois does for rank-1 temperaments, the concept of pergens does for temperaments of rank 2 or higher.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
In keeping with the higher-prime-agnostic nature of pergens, untempered just intonation has a pergen of the octave, the fifth, and a list of commas, each containing only one higher prime: (P8, P5, 81:80, 64:63, ...). The higher prime's exponent in the comma's monzo must be ±1. The commas can be replaced with microtonal accidentals: (P8, P5, ^1, /1,...).&lt;br /&gt;
In keeping with the higher-prime-agnostic nature of pergens, untempered just intonation has a pergen of the octave, the fifth, and a list of commas, each containing only one higher prime. The higher prime's exponent in the comma's monzo must be ±1, and the comma should map to P1, e.g. 81/80 or 64/63. The commas are notated with microtonal accidentals (P8, P5, ^1, /1,...) or colors (P8, P5, g1, r1,...).&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
Line 1,457: Line 1,464:
Below is a table that lists all the rank-2 pergens that contain primes 2 and 3, up to third-splits. They are grouped into blocks by the size of the larger splitting fraction, and grouped within each block into sections by the smaller fraction. Most sections have two halves. In the first half, the octave has the larger fraction, in the second, the multi-gen does. Within each half, the pergens are sorted by multigen size. This represents a natural ordering of rank-2 pergens.&lt;br /&gt;
Below is a table that lists all the rank-2 pergens that contain primes 2 and 3, up to third-splits. They are grouped into blocks by the size of the larger splitting fraction, and grouped within each block into sections by the smaller fraction. Most sections have two halves. In the first half, the octave has the larger fraction, in the second, the multi-gen does. Within each half, the pergens are sorted by multigen size. This represents a natural ordering of rank-2 pergens.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
The enharmonic interval, or more briefly the &lt;strong&gt;enharmonic&lt;/strong&gt;, can be added to or subtracted from any note (or interval), renaming it, but not changing the pitch of the note (or width of the interval). It's analogous to the dim 2nd in 12-edo, which equates C# with Db, and A4 with d5. In a single-comma temperament, the comma usually maps to the pergen's enharmonic. This interval is very important. Everything about the notation can be deduced from the pergen and the enharmonic.&lt;br /&gt;
The enharmonic interval, or more briefly the &lt;strong&gt;enharmonic&lt;/strong&gt;, can be added to or subtracted from any note (or interval), renaming it, but not changing the pitch of the note (or width of the interval). It's analogous to the dim 2nd in 12-edo, which equates C# with Db, and A4 with d5. In a single-comma temperament, the comma usually maps to the pergen's enharmonic. The pergen and the enharmonic together define the notation.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
The &lt;strong&gt;genchain&lt;/strong&gt; (chain of generators) in the table is only a short section of the full genchain.&lt;br /&gt;
The &lt;strong&gt;genchain&lt;/strong&gt; (chain of generators) in the table is only a short section of the full genchain.&lt;br /&gt;
C - G implies ...Eb Bb F C G D A E B F# C#...&lt;br /&gt;
&lt;span style="display: block; text-align: center;"&gt;C - G implies ...Eb Bb F C G D A E B F# C#...&lt;/span&gt;&lt;span style="display: block; text-align: center;"&gt;C - Eb^=Ev - G implies ...F -- Ab^=Av -- C -- Eb^=Ev -- G -- Bb^=Bv -- D...&lt;/span&gt;&lt;br /&gt;
C - Eb^=Ev - G implies ...F -- Ab^=Av -- C -- Eb^=Ev -- G -- Bb^=Bv -- D -- F^=F#v -- A -- C^=C#v -- E...&lt;br /&gt;
If the octave is split, the table has a &lt;strong&gt;perchain&lt;/strong&gt; (&amp;quot;peer-chain&amp;quot;, chain of periods) that shows the octave: C -- F#v=Gb^ -- C&lt;br /&gt;
If the octave is split, the table has a &lt;strong&gt;perchain&lt;/strong&gt; (&amp;quot;peer-chain&amp;quot;, chain of periods) that shows the octave: C -- F#v=Gb^ -- C&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
Line 2,344: Line 2,350:
&lt;br /&gt;
&lt;br /&gt;
For a pergen (P8/m, M/n), let x be any number that divides m, R be any 3-limit ratio, and z be any integer. The interval z·P8 ± x·R splits into x parts. Let y be any number that divides n, the interval z·M ± y·R splits into y parts. If x divides both m and n, the interval z·P8 + z'·M ± x·R splits into x parts (z' is any integer).&lt;br /&gt;
For a pergen (P8/m, M/n), let x be any number that divides m, R be any 3-limit ratio, and z be any integer. The interval z·P8 ± x·R splits into x parts. Let y be any number that divides n, the interval z·M ± y·R splits into y parts. If x divides both m and n, the interval z·P8 + z'·M ± x·R splits into x parts (z' is any integer).&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:72:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc8"&gt;&lt;a name="Further Discussion-Singles and doubles"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:72 --&gt;Singles and doubles&lt;/h2&gt;
&lt;!-- ws:start:WikiTextHeadingRule:72:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc8"&gt;&lt;a name="Further Discussion-Singles and doubles"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:72 --&gt;Singles and doubles&lt;/h2&gt;
Line 3,044: Line 3,049:
17edo+y perchain: C C^ Dv D... (E = dd3, E' = vm2 = vvA1), genchain: same as blackwood, but with / and \&lt;br /&gt;
17edo+y perchain: C C^ Dv D... (E = dd3, E' = vm2 = vvA1), genchain: same as blackwood, but with / and \&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:92:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc18"&gt;&lt;a name="Further Discussion-Pergens and MOS scales"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:92 --&gt;Pergens and MOS scales&lt;/h2&gt;
&lt;!-- ws:start:WikiTextHeadingRule:92:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc18"&gt;&lt;a name="Further Discussion-Notating arbitrary P and G tunings*"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:92 --&gt;Notating arbitrary P and G tunings*&lt;/h2&gt;
&lt;br /&gt;
Given only the period as some fraction of the octave, and the generator's cents, it's often possible to work backwards and find an appropriate multigen.&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:94:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc19"&gt;&lt;a name="Further Discussion-Pergens and MOS scales"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:94 --&gt;Pergens and MOS scales&lt;/h2&gt;
  &lt;br /&gt;
  &lt;br /&gt;
Every rank-2 pergen generates certain MOS scales. This of course depends on the exact size of the generator. In this table, the 5th is assumed to be between 4\7 and 3\5. Sometimes the genchain is too short to generate the multigen. For example, (P8/3, P4/2) [6] has 3 genchains, each with only 2 notes, and thus only 1 step. But it takes 2 steps to make a 4th, so the scale doesn't actually contain any 4ths. Such scales are marked with an asterisk.&lt;br /&gt;
Every rank-2 pergen generates certain MOS scales. This of course depends on the exact size of the generator. In this table, the 5th is assumed to be between 4\7 and 3\5. Sometimes the genchain is too short to generate the multigen. For example, (P8/3, P4/2) [6] has 3 genchains, each with only 2 notes, and thus only 1 step. But it takes 2 steps to make a 4th, so the scale doesn't actually contain any 4ths. Such scales are marked with an asterisk.&lt;br /&gt;
Line 4,152: Line 4,161:
Some MOS scales are better understood using a pergen with a nonstandard prime subgroup. For example, 6L 1s can be roulette [7], with a 2.5.7 pergen (P8, (5/4)/2), where 5·G = 7/4.&lt;br /&gt;
Some MOS scales are better understood using a pergen with a nonstandard prime subgroup. For example, 6L 1s can be roulette [7], with a 2.5.7 pergen (P8, (5/4)/2), where 5·G = 7/4.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:94:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc19"&gt;&lt;a name="Further Discussion-Pergens and EDOs"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:94 --&gt;Pergens and EDOs&lt;/h2&gt;
&lt;!-- ws:start:WikiTextHeadingRule:96:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc20"&gt;&lt;a name="Further Discussion-Pergens and EDOs"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:96 --&gt;Pergens and EDOs&lt;/h2&gt;
  &lt;br /&gt;
  &lt;br /&gt;
Pergens have much in common with edos. Pergens of rank-2 assume only primes 2 and 3, edos assume only prime 2. There are an infinite number of edos, but fewer than a hundred have been explored. There are an infinite number of pergens, but fewer than a hundred will suffice most composers.&lt;br /&gt;
Pergens have much in common with edos. Pergens of rank-2 assume only primes 2 and 3, edos assume only prime 2. There are an infinite number of edos, but fewer than a hundred have been explored. There are an infinite number of pergens, but fewer than a hundred will suffice most composers.&lt;br /&gt;
Line 4,458: Line 4,467:
&lt;/table&gt;
&lt;/table&gt;


See the next section for examples of which pergens are supported by a specific edo.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:96:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc20"&gt;&lt;a name="Further Discussion-Supplemental materials"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:96 --&gt;Supplemental materials&lt;/h2&gt;
&lt;!-- ws:start:WikiTextHeadingRule:98:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc21"&gt;&lt;a name="Further Discussion-Supplemental materials*"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:98 --&gt;Supplemental materials*&lt;/h2&gt;
  &lt;br /&gt;
  &lt;br /&gt;
needs more screenshots, including 12-edo's pergens&lt;br /&gt;
needs pergen squares picture&lt;br /&gt;
&lt;br /&gt;
This PDF is a rank-2 notation guide that shows the full lattice for the first 15 pergens, up through the third-splits block. It includes alternate enharmonics for many pergens.&lt;br /&gt;
This PDF is a rank-2 notation guide that shows the full lattice for the first 15 pergens, up through the third-splits block. It includes alternate enharmonics for many pergens.&lt;br /&gt;
&lt;!-- ws:start:WikiTextUrlRule:5557:http://www.tallkite.com/misc_files/pergens.pdf --&gt;&lt;a class="wiki_link_ext" href="http://www.tallkite.com/misc_files/pergens.pdf" rel="nofollow"&gt;http://www.tallkite.com/misc_files/pergens.pdf&lt;/a&gt;&lt;!-- ws:end:WikiTextUrlRule:5557 --&gt;&lt;br /&gt;
&lt;!-- ws:start:WikiTextUrlRule:5569:http://www.tallkite.com/misc_files/pergens.pdf --&gt;&lt;a class="wiki_link_ext" href="http://www.tallkite.com/misc_files/pergens.pdf" rel="nofollow"&gt;http://www.tallkite.com/misc_files/pergens.pdf&lt;/a&gt;&lt;!-- ws:end:WikiTextUrlRule:5569 --&gt;&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
Alt-pergenLister lists out thousands of pergens, and suggests periods, generators and enharmonics for each one. Alternate enharmonics are not listed, but single-pair notation for false-double pergens is. It can also list only those pergens supported by a specific edo. Written in Jesusonic, runs inside Reaper.&lt;br /&gt;
Alt-pergenLister lists out thousands of pergens, and suggests periods, generators and enharmonics for each one. Alternate enharmonics are not listed, but single-pair notation for false-double pergens is. It can also list only those pergens supported by a specific edo. Written in Jesusonic, runs inside Reaper.&lt;br /&gt;
&lt;!-- ws:start:WikiTextUrlRule:5558:http://www.tallkite.com/misc_files/alt-pergenLister.zip --&gt;&lt;a class="wiki_link_ext" href="http://www.tallkite.com/misc_files/alt-pergenLister.zip" rel="nofollow"&gt;http://www.tallkite.com/misc_files/alt-pergenLister.zip&lt;/a&gt;&lt;!-- ws:end:WikiTextUrlRule:5558 --&gt;&lt;br /&gt;
&lt;!-- ws:start:WikiTextUrlRule:5570:http://www.tallkite.com/misc_files/alt-pergenLister.zip --&gt;&lt;a class="wiki_link_ext" href="http://www.tallkite.com/misc_files/alt-pergenLister.zip" rel="nofollow"&gt;http://www.tallkite.com/misc_files/alt-pergenLister.zip&lt;/a&gt;&lt;!-- ws:end:WikiTextUrlRule:5570 --&gt;&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
Screenshot of the first 38 pergens:&lt;br /&gt;
Screenshot of the first 38 pergens:&lt;br /&gt;
&lt;!-- ws:start:WikiTextLocalImageRule:3231:&amp;lt;img src=&amp;quot;/file/view/alt-pergenLister.png/624838213/704x460/alt-pergenLister.png&amp;quot; alt=&amp;quot;&amp;quot; title=&amp;quot;&amp;quot; style=&amp;quot;height: 460px; width: 704px;&amp;quot; /&amp;gt; --&gt;&lt;img src="/file/view/alt-pergenLister.png/624838213/704x460/alt-pergenLister.png" alt="alt-pergenLister.png" title="alt-pergenLister.png" style="height: 460px; width: 704px;" /&gt;&lt;!-- ws:end:WikiTextLocalImageRule:3231 --&gt;&lt;br /&gt;
&lt;!-- ws:start:WikiTextLocalImageRule:3234:&amp;lt;img src=&amp;quot;/file/view/alt-pergenLister.png/624838213/704x460/alt-pergenLister.png&amp;quot; alt=&amp;quot;&amp;quot; title=&amp;quot;&amp;quot; style=&amp;quot;height: 460px; width: 704px;&amp;quot; /&amp;gt; --&gt;&lt;img src="/file/view/alt-pergenLister.png/624838213/704x460/alt-pergenLister.png" alt="alt-pergenLister.png" title="alt-pergenLister.png" style="height: 460px; width: 704px;" /&gt;&lt;!-- ws:end:WikiTextLocalImageRule:3234 --&gt;&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
Listing all valid pergens is not a trivial task, like listing all valid edos or all valid MOS scales. Not all combinations of octave fractions and multigen fractions make a valid pergen. The search for rank-2 pergens can be done by looping through all possible square mappings [(x, y), (0, z)], and using the formula (P8/x, (i·z - y, x) / xz). While x is always positive and z is always nonzero, y can take on any value. For any x and z, y can be constrained to produce a reasonable cents value for 3/1. Let T be the tempered twefth 3/1. The mapping says T = y·P + z·G = y·P8/x + z·G. Thus y = x·(T/P8 - z·G/P8). We adopt the convention that G is less than half an octave. We constrain T so that the 5th is between 600¢ and 800¢, which certainly includes anything that sounds like a 5th. Thus T is between 3/2 and 5/3 of an octave. We assume that if the octave is stretched, the ranges of T and G will be stretched along with it. The outer ranges of y can now be computed, using the floor function to round down to the nearest integer, and the ceiling function to round up:&lt;br /&gt;
Listing all valid pergens is not a trivial task, like listing all valid edos or all valid MOS scales. Not all combinations of octave fractions and multigen fractions make a valid pergen. The search for rank-2 pergens can be done by looping through all possible square mappings [(x, y), (0, z)], and using the formula (P8/x, (i·z - y, x) / xz). While x is always positive and z is always nonzero, y can take on any value. For any x and z, y can be constrained to produce a reasonable cents value for 3/1. Let T be the tempered twefth 3/1. The mapping says T = y·P + z·G = y·P8/x + z·G. Thus y = x·(T/P8 - z·G/P8). We adopt the convention that G is less than half an octave. We constrain T so that the 5th is between 600¢ and 800¢, which certainly includes anything that sounds like a 5th. Thus T is between 3/2 and 5/3 of an octave. We assume that if the octave is stretched, the ranges of T and G will be stretched along with it. The outer ranges of y can now be computed, using the floor function to round down to the nearest integer, and the ceiling function to round up:&lt;br /&gt;
Line 4,482: Line 4,495:
The makeMapping function uses the two parameters as x and z, and loops through all valid values of y. Every value of i from -x to x is tested, and the one that minimizes the multigen's splitting fraction and cents is chosen. This combination of x, y, z and i makes a valid pergen. If the pergen is of the form (P8/m, P4), it's converted to (P8/m, P5). This pergen is added to the list, unless it's a duplicate. The pergens are almost but not quite in the proper order, they will need to be sorted. Experimenting with allowing y and i to range further does not produce any additional pergens.&lt;br /&gt;
The makeMapping function uses the two parameters as x and z, and loops through all valid values of y. Every value of i from -x to x is tested, and the one that minimizes the multigen's splitting fraction and cents is chosen. This combination of x, y, z and i makes a valid pergen. If the pergen is of the form (P8/m, P4), it's converted to (P8/m, P5). This pergen is added to the list, unless it's a duplicate. The pergens are almost but not quite in the proper order, they will need to be sorted. Experimenting with allowing y and i to range further does not produce any additional pergens.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:98:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc21"&gt;&lt;a name="Further Discussion-Various proofs (unfinished)"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:98 --&gt;Various proofs (unfinished)&lt;/h2&gt;
&lt;!-- ws:start:WikiTextHeadingRule:100:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc22"&gt;&lt;a name="Further Discussion-Various proofs (unfinished)"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:100 --&gt;Various proofs (unfinished)&lt;/h2&gt;
  &lt;br /&gt;
  &lt;br /&gt;
The interval P8/2 has a &amp;quot;ratio&amp;quot; of the square root of 2 = 2&lt;span style="vertical-align: super;"&gt;1/2&lt;/span&gt;, and its monzo can be written with fractions as (1/2, 0). Likewise, the pergen (P8/m, (a,b)/n) implies P = (1/m, 0) and G = (a/n, b/n). These equations make the &lt;strong&gt;pergen matrix&lt;/strong&gt; [(1/m 0) (a/n b/n)], which is P and G in terms of P8 and P12. Its inverse is [(m 0) (-am/b n/b)], which is P8 and P12 in terms of P and G, i.e. the square mapping.&lt;br /&gt;
The interval P8/2 has a &amp;quot;ratio&amp;quot; of the square root of 2 = 2&lt;span style="vertical-align: super;"&gt;1/2&lt;/span&gt;, and its monzo can be written with fractions as (1/2, 0). Likewise, the pergen (P8/m, (a,b)/n) implies P = (1/m, 0) and G = (a/n, b/n). These equations make the &lt;strong&gt;pergen matrix&lt;/strong&gt; [(1/m 0) (a/n b/n)], which is P and G in terms of P8 and P12. Its inverse is [(m 0) (-am/b n/b)], which is P8 and P12 in terms of P and G, i.e. the square mapping.&lt;br /&gt;
Line 4,575: Line 4,588:
Although not rigorously proven, these last two tests have been empirically verified by alt-pergenLister.&lt;br /&gt;
Although not rigorously proven, these last two tests have been empirically verified by alt-pergenLister.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:100:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc22"&gt;&lt;a name="Further Discussion-Miscellaneous Notes"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:100 --&gt;Miscellaneous Notes&lt;/h2&gt;
&lt;!-- ws:start:WikiTextHeadingRule:102:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc23"&gt;&lt;a name="Further Discussion-Miscellaneous Notes"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:102 --&gt;Miscellaneous Notes&lt;/h2&gt;
  &lt;br /&gt;
  &lt;br /&gt;
&lt;u&gt;&lt;strong&gt;Combining pergens&lt;/strong&gt;&lt;/u&gt;&lt;br /&gt;
&lt;u&gt;&lt;strong&gt;Combining pergens&lt;/strong&gt;&lt;/u&gt;&lt;br /&gt;