Kite's thoughts on pergens: Difference between revisions

Wikispaces>TallKite
**Imported revision 626613657 - Original comment: **
Wikispaces>TallKite
**Imported revision 626629395 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:TallKite|TallKite]] and made on <tt>2018-02-19 11:49:21 UTC</tt>.<br>
: This revision was by author [[User:TallKite|TallKite]] and made on <tt>2018-02-19 18:44:56 UTC</tt>.<br>
: The original revision id was <tt>626613657</tt>.<br>
: The original revision id was <tt>626629395</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
Line 337: Line 337:
For a pergen (P8/m, M/n), let x be any number that divides m, R be any 3-limit ratio, and z be any integer. The interval z·P8 ± x·R splits into x parts. Let y be any number that divides n, the interval z·M ± y·R splits into y parts. If x divides both m and n, the interval z·P8 + z'·M ± x·R splits into x parts (z' is any integer).
For a pergen (P8/m, M/n), let x be any number that divides m, R be any 3-limit ratio, and z be any integer. The interval z·P8 ± x·R splits into x parts. Let y be any number that divides n, the interval z·M ± y·R splits into y parts. If x divides both m and n, the interval z·P8 + z'·M ± x·R splits into x parts (z' is any integer).


||~ category ||||~ __pergen__ ||~ secondary splits &lt;= P12 ||
||~ block ||||~ pergen ||~ secondary splits &lt;= 12th ||
||~ halves ||||= all pergens ||= M3/2, d5/2, A5/2, m7/2, M9/2, A11/2 ||
||~ halves ||||= all pergens ||= M3/2, d5/2, A5/4, m7/2, M9/2, A11/2 ||
||  ||= (P8/2, P5) ||= half-8ve ||= M2/2, A4/2, m6/2, M10/2, d12/2 ||
||  ||= (P8/2, P5) ||= half-8ve ||= M2/2, M3/4, A4/6, m6/2, M10/2, d12/2 ||
||  ||= (P8, P4/2) ||= half-4th ||= m2/2, M6/2, A8/2, m10/2, P12/2 ||
||  ||= (P8, P4/2) ||= half-4th ||= m2/2, M6/2, A8/2, m10/2, P12/2 ||
||  ||= (P8, P5/2) ||= half-5th ||= A1/2, m3/2, M7/2, m9/2, P11/2 ||
||  ||= (P8, P5/2) ||= half-5th ||= A1/2, m3/2, M7/2, m9/2, P11/2 ||
Line 345: Line 345:
||~ thirds ||||= all pergens ||= A4/3, m10/3 ||
||~ thirds ||||= all pergens ||= A4/3, m10/3 ||
||  ||= (P8/3, P5) ||= third-8ve ||= m3/3, M6/3, A11/3, d12/3 ||
||  ||= (P8/3, P5) ||= third-8ve ||= m3/3, M6/3, A11/3, d12/3 ||
||  ||= (P8, P4/3) ||= third-4th ||= A1/3, m7/3, M7/3, M10/3 ||
||  ||= (P8, P4/3) ||= third-4th ||= A1/3, m7/6, M7/3, M10/3 ||
||  ||= (P8, P5/3) ||= third-5th ||= m2/3, m6/3, M9/3, A8/3 ||
||  ||= (P8, P5/3) ||= third-5th ||= m2/3, m6/3, M9/3, A8/3 ||
||  ||= (P8, P11/3) ||= third-11th ||= M2/3, M3/3, m9/3, P12/3 ||
||  ||= (P8, P11/3) ||= third-11th ||= M2/3, M3/3, m9/3, P12/3 ||
||  ||= (P8/3, P4/2) ||= third-8ve half-4th ||=   ||
||  ||= (P8/3, P4/2) ||= third-8ve half-4th ||= half-4th + third-8ve + M6/6, m10/6, A11/12 ||
||  ||=   ||=   ||=   ||
||  ||= (P8/3, P5/2) ||= third-8ve half-5th ||= half-5th + third-8ve + m3/6, d5/12 ||
||  ||=   ||=   ||=   ||
||  ||= (P8/2, P4/3) ||= half-8ve third-4th ||= half-8ve + third-4th + A4/6, M10/6 ||
||  ||=   ||=   ||=   ||
||  ||= (P8/2, P5/3) ||= half-8ve third-5th ||= half-8ve + third-5th + m6/6, M9/6 ||
||  ||=   ||=   ||=   ||
||  ||= (P8/2, P11/3) ||= half-8ve third-11th ||= half-8ve + third-11th + M2/6, M3/12, A4/18 ||
||  ||=   ||=   ||=   ||
||  ||= (P83, P4/3) ||= third-everything ||= (every 3-limit interval)/3 ||
||  ||=  ||=  ||=  ||
||  ||=  ||=  ||=  ||
||  ||=  ||=  ||=  ||
||  ||=  ||=  ||=  ||
Line 2,529: Line 2,529:
&lt;table class="wiki_table"&gt;
&lt;table class="wiki_table"&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;th&gt;category&lt;br /&gt;
         &lt;th&gt;block&lt;br /&gt;
&lt;/th&gt;
&lt;/th&gt;
         &lt;th colspan="2"&gt;&lt;u&gt;pergen&lt;/u&gt;&lt;br /&gt;
         &lt;th colspan="2"&gt;pergen&lt;br /&gt;
&lt;/th&gt;
&lt;/th&gt;
         &lt;th&gt;secondary splits &amp;lt;= P12&lt;br /&gt;
         &lt;th&gt;secondary splits &amp;lt;= 12th&lt;br /&gt;
&lt;/th&gt;
&lt;/th&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 2,541: Line 2,541:
         &lt;td colspan="2" style="text-align: center;"&gt;all pergens&lt;br /&gt;
         &lt;td colspan="2" style="text-align: center;"&gt;all pergens&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;M3/2, d5/2, A5/2, m7/2, M9/2, A11/2&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;M3/2, d5/2, A5/4, m7/2, M9/2, A11/2&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 2,551: Line 2,551:
         &lt;td style="text-align: center;"&gt;half-8ve&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;half-8ve&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;M2/2, A4/2, m6/2, M10/2, d12/2&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;M2/2, M3/4, A4/6, m6/2, M10/2, d12/2&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 2,609: Line 2,609:
         &lt;td style="text-align: center;"&gt;third-4th&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;third-4th&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;A1/3, m7/3, M7/3, M10/3&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;A1/3, m7/6, M7/3, M10/3&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 2,639: Line 2,639:
         &lt;td style="text-align: center;"&gt;third-8ve half-4th&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;third-8ve half-4th&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;half-4th + third-8ve + M6/6, m10/6, A11/12&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 2,645: Line 2,645:
         &lt;td&gt;&lt;br /&gt;
         &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;(P8/3, P5/2)&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;third-8ve half-5th&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;half-5th + third-8ve + m3/6, d5/12&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 2,655: Line 2,655:
         &lt;td&gt;&lt;br /&gt;
         &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;(P8/2, P4/3)&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;half-8ve third-4th&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;half-8ve + third-4th + A4/6, M10/6&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 2,665: Line 2,665:
         &lt;td&gt;&lt;br /&gt;
         &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;(P8/2, P5/3)&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;half-8ve third-5th&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;half-8ve + third-5th + m6/6, M9/6&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 2,675: Line 2,675:
         &lt;td&gt;&lt;br /&gt;
         &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;(P8/2, P11/3)&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;half-8ve third-11th&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;half-8ve + third-11th + M2/6, M3/12, A4/18&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 2,685: Line 2,685:
         &lt;td&gt;&lt;br /&gt;
         &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;(P83, P4/3)&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;third-everything&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;(every 3-limit interval)/3&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;