Kite's thoughts on pergens: Difference between revisions

Wikispaces>TallKite
**Imported revision 626995149 - Original comment: **
Wikispaces>TallKite
**Imported revision 627091177 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:TallKite|TallKite]] and made on <tt>2018-02-28 01:08:43 UTC</tt>.<br>
: This revision was by author [[User:TallKite|TallKite]] and made on <tt>2018-03-01 18:52:12 UTC</tt>.<br>
: The original revision id was <tt>626995149</tt>.<br>
: The original revision id was <tt>627091177</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
Line 900: Line 900:
(a',b') = [k',s'] = (-11k'+19s', 7k'-12s')
(a',b') = [k',s'] = (-11k'+19s', 7k'-12s')
a'·b - a·b' works out to be k·s' - k'·s, and we have GCD ((k·s' - k'·s)·m/b, b'·n/b)
a'·b - a·b' works out to be k·s' - k'·s, and we have GCD ((k·s' - k'·s)·m/b, b'·n/b)
If s is a multiple of n (E is an A1) and s' is a multiple of n, let s = x·n and s' = y·n
If s is a multiple of n (happens when E is an A1) and s' is a multiple of n, let s = x·n and s' = y·n
GCD ((k·y·n - k'·x·n)·m/b, b'·n/b) = (n/b) · GCD (x·m·(y·k - k'), b')
GCD ((k·y·n - k'·x·n)·m/b, b'·n/b) = (n/b) · GCD (x·m·(y·k - k'), b')
Thus every such interval is split, e.g. half-5th splits every 3rd, 5th, 7th, 9th and 11th, including aug, dim, major and minor ones.
Thus every such interval is split, e.g. half-5th splits every 3rd, 5th, 7th, 9th and 11th, including aug, dim, major and minor ones.
Line 906: Line 906:




Assume it's a false double, and there's a comma (u,v,w) that splits both P8 and (a,b) appropriately
Assume the pergen is a false double, and there's a comma C = (u,v,w) that splits both P8 and (a,b) appropriately. Can we prove r = 1?
can we prove r = 1?
 
 
 
 
2.3.7 and (22,-5,-5) = P8/5
2.3.7 and (22,-5,-5) = P8/5
GCD (u,v,w) = 1
GCD (u,v,w) = 1
Line 5,695: Line 5,698:
finish proofs&lt;br /&gt;
finish proofs&lt;br /&gt;
link from: ups and downs page, Kite Giedraitis page, MOS scale names page,&lt;br /&gt;
link from: ups and downs page, Kite Giedraitis page, MOS scale names page,&lt;br /&gt;
&lt;!-- ws:start:WikiTextUrlRule:7108:http://xenharmonic.wikispaces.com/Proposed+names+for+rank+2+temperaments --&gt;&lt;a href="http://xenharmonic.wikispaces.com/Proposed+names+for+rank+2+temperaments"&gt;http://xenharmonic.wikispaces.com/Proposed+names+for+rank+2+temperaments&lt;/a&gt;&lt;!-- ws:end:WikiTextUrlRule:7108 --&gt;&lt;br /&gt;
&lt;!-- ws:start:WikiTextUrlRule:7111:http://xenharmonic.wikispaces.com/Proposed+names+for+rank+2+temperaments --&gt;&lt;a href="http://xenharmonic.wikispaces.com/Proposed+names+for+rank+2+temperaments"&gt;http://xenharmonic.wikispaces.com/Proposed+names+for+rank+2+temperaments&lt;/a&gt;&lt;!-- ws:end:WikiTextUrlRule:7111 --&gt;&lt;br /&gt;
&lt;!-- ws:start:WikiTextUrlRule:7109:http://xenharmonic.wikispaces.com/Tour+of+Regular+Temperaments --&gt;&lt;a href="http://xenharmonic.wikispaces.com/Tour+of+Regular+Temperaments"&gt;http://xenharmonic.wikispaces.com/Tour+of+Regular+Temperaments&lt;/a&gt;&lt;!-- ws:end:WikiTextUrlRule:7109 --&gt;&lt;br /&gt;
&lt;!-- ws:start:WikiTextUrlRule:7112:http://xenharmonic.wikispaces.com/Tour+of+Regular+Temperaments --&gt;&lt;a href="http://xenharmonic.wikispaces.com/Tour+of+Regular+Temperaments"&gt;http://xenharmonic.wikispaces.com/Tour+of+Regular+Temperaments&lt;/a&gt;&lt;!-- ws:end:WikiTextUrlRule:7112 --&gt;&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:101:&amp;lt;h3&amp;gt; --&gt;&lt;h3 id="toc22"&gt;&lt;a name="Further Discussion-Supplemental materials*-Notaion guide PDF"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:101 --&gt;Notaion guide PDF&lt;/h3&gt;
&lt;!-- ws:start:WikiTextHeadingRule:101:&amp;lt;h3&amp;gt; --&gt;&lt;h3 id="toc22"&gt;&lt;a name="Further Discussion-Supplemental materials*-Notaion guide PDF"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:101 --&gt;Notaion guide PDF&lt;/h3&gt;
  &lt;br /&gt;
  &lt;br /&gt;
This PDF is a rank-2 notation guide that shows the full lattice for the first 15 pergens, up through the third-splits block. It includes alternate enharmonics for many pergens.&lt;br /&gt;
This PDF is a rank-2 notation guide that shows the full lattice for the first 15 pergens, up through the third-splits block. It includes alternate enharmonics for many pergens.&lt;br /&gt;
&lt;!-- ws:start:WikiTextUrlRule:7110:http://www.tallkite.com/misc_files/pergens.pdf --&gt;&lt;a class="wiki_link_ext" href="http://www.tallkite.com/misc_files/pergens.pdf" rel="nofollow"&gt;http://www.tallkite.com/misc_files/pergens.pdf&lt;/a&gt;&lt;!-- ws:end:WikiTextUrlRule:7110 --&gt;&lt;br /&gt;
&lt;!-- ws:start:WikiTextUrlRule:7113:http://www.tallkite.com/misc_files/pergens.pdf --&gt;&lt;a class="wiki_link_ext" href="http://www.tallkite.com/misc_files/pergens.pdf" rel="nofollow"&gt;http://www.tallkite.com/misc_files/pergens.pdf&lt;/a&gt;&lt;!-- ws:end:WikiTextUrlRule:7113 --&gt;&lt;br /&gt;
(screenshot)&lt;br /&gt;
(screenshot)&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
Line 5,711: Line 5,714:
  &lt;br /&gt;
  &lt;br /&gt;
Alt-pergenLister lists out thousands of pergens, and suggests periods, generators and enharmonics for each one. Alternate enharmonics are not listed, but single-pair notation for false-double pergens is. It can also list only those pergens supported by a specific edo. Written in Jesusonic, runs inside Reaper.&lt;br /&gt;
Alt-pergenLister lists out thousands of pergens, and suggests periods, generators and enharmonics for each one. Alternate enharmonics are not listed, but single-pair notation for false-double pergens is. It can also list only those pergens supported by a specific edo. Written in Jesusonic, runs inside Reaper.&lt;br /&gt;
&lt;!-- ws:start:WikiTextUrlRule:7111:http://www.tallkite.com/misc_files/alt-pergenLister.zip --&gt;&lt;a class="wiki_link_ext" href="http://www.tallkite.com/misc_files/alt-pergenLister.zip" rel="nofollow"&gt;http://www.tallkite.com/misc_files/alt-pergenLister.zip&lt;/a&gt;&lt;!-- ws:end:WikiTextUrlRule:7111 --&gt;&lt;br /&gt;
&lt;!-- ws:start:WikiTextUrlRule:7114:http://www.tallkite.com/misc_files/alt-pergenLister.zip --&gt;&lt;a class="wiki_link_ext" href="http://www.tallkite.com/misc_files/alt-pergenLister.zip" rel="nofollow"&gt;http://www.tallkite.com/misc_files/alt-pergenLister.zip&lt;/a&gt;&lt;!-- ws:end:WikiTextUrlRule:7114 --&gt;&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
Red indicates problems. Generators of 50¢ or less are in red. Enharmonics of a 3rd or more are in red. Screenshots of the first 38 pergens:&lt;br /&gt;
Red indicates problems. Generators of 50¢ or less are in red. Enharmonics of a 3rd or more are in red. Screenshots of the first 38 pergens:&lt;br /&gt;
Line 5,748: Line 5,751:
(a',b') = [k',s'] = (-11k'+19s', 7k'-12s')&lt;br /&gt;
(a',b') = [k',s'] = (-11k'+19s', 7k'-12s')&lt;br /&gt;
a'·b - a·b' works out to be k·s' - k'·s, and we have GCD ((k·s' - k'·s)·m/b, b'·n/b)&lt;br /&gt;
a'·b - a·b' works out to be k·s' - k'·s, and we have GCD ((k·s' - k'·s)·m/b, b'·n/b)&lt;br /&gt;
If s is a multiple of n (E is an A1) and s' is a multiple of n, let s = x·n and s' = y·n&lt;br /&gt;
If s is a multiple of n (happens when E is an A1) and s' is a multiple of n, let s = x·n and s' = y·n&lt;br /&gt;
GCD ((k·y·n - k'·x·n)·m/b, b'·n/b) = (n/b) · GCD (x·m·(y·k - k'), b')&lt;br /&gt;
GCD ((k·y·n - k'·x·n)·m/b, b'·n/b) = (n/b) · GCD (x·m·(y·k - k'), b')&lt;br /&gt;
Thus every such interval is split, e.g. half-5th splits every 3rd, 5th, 7th, 9th and 11th, including aug, dim, major and minor ones.&lt;br /&gt;
Thus every such interval is split, e.g. half-5th splits every 3rd, 5th, 7th, 9th and 11th, including aug, dim, major and minor ones.&lt;br /&gt;
Line 5,754: Line 5,757:
&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
Assume it's a false double, and there's a comma (u,v,w) that splits both P8 and (a,b) appropriately&lt;br /&gt;
Assume the pergen is a false double, and there's a comma C = (u,v,w) that splits both P8 and (a,b) appropriately. Can we prove r = 1?&lt;br /&gt;
can we prove r = 1?&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
2.3.7 and (22,-5,-5) = P8/5&lt;br /&gt;
2.3.7 and (22,-5,-5) = P8/5&lt;br /&gt;
GCD (u,v,w) = 1&lt;br /&gt;
GCD (u,v,w) = 1&lt;br /&gt;