Kite's thoughts on pergens: Difference between revisions

Wikispaces>TallKite
**Imported revision 627923165 - Original comment: **
Wikispaces>TallKite
**Imported revision 627927613 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:TallKite|TallKite]] and made on <tt>2018-03-22 19:29:07 UTC</tt>.<br>
: This revision was by author [[User:TallKite|TallKite]] and made on <tt>2018-03-22 23:51:59 UTC</tt>.<br>
: The original revision id was <tt>627923165</tt>.<br>
: The original revision id was <tt>627927613</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
Line 675: Line 675:
or (22,-5,0,-5) ||= (P8/5, P5) ||= fifth-8ve ||= E = v&lt;span style="vertical-align: super;"&gt;5&lt;/span&gt;m2 ||= C D^^ Fv G^ Bbvv C ||= C G D A E... ||= a valid notation ||
or (22,-5,0,-5) ||= (P8/5, P5) ||= fifth-8ve ||= E = v&lt;span style="vertical-align: super;"&gt;5&lt;/span&gt;m2 ||= C D^^ Fv G^ Bbvv C ||= C G D A E... ||= a valid notation ||
||= Blackwood ||= 256/243 ||= (P8/5, ^1) ||= rank-2 5-edo ||= E = m2 ||= C D=Eb E=F G A=Bb B=C ||= C Ev G#vv... ||= a valid notation ||
||= Blackwood ||= 256/243 ||= (P8/5, ^1) ||= rank-2 5-edo ||= E = m2 ||= C D=Eb E=F G A=Bb B=C ||= C Ev G#vv... ||= a valid notation ||
||= " ||= " ||= (P8/5, M3) ||= fifth-8ve major 3rd ||= E = v&lt;span style="vertical-align: super;"&gt;5&lt;/span&gt;m2 ||= C D^^ Fv G^ Bbvv C ||= C E G#... ||= invalid, no G,  
||= " ||= " ||= (P8/5, M3) ||= fifth-8ve major 3rd ||= E = v&lt;span style="vertical-align: super;"&gt;5&lt;/span&gt;m2 ||= C D^^ Fv G^ Bbvv C ||= C E G#... ||= invalid, no G,
D or A notes ||
D or A notes ||
== ==  
== ==  
Line 932: Line 932:
For example, for 7-edo and 17-edo, the edomappings are (7, 4, 2) and (17, 10, 5). Their cross product is (0, -1, 2). This comma equates two generators with a 5th. The pergen is obviously (P8, P5/2).
For example, for 7-edo and 17-edo, the edomappings are (7, 4, 2) and (17, 10, 5). Their cross product is (0, -1, 2). This comma equates two generators with a 5th. The pergen is obviously (P8, P5/2).


To verify the validity of this approach, one can find a specific JI ratio that maps to both 2\7 and 5\17 and use it to construct a comma. The ratio must contain only one higher prime, and must have color depth 1. If desired, a ratio of the form p/t can always be found, where p is a higher prime and t is a power of two. Any ratio between 3\14 and 5\14 maps to 2\7, and any ratio between 9\34 and 11\34 maps to 5\17. (The formula is (2n±1)/2d.) This gives us the ranges 257-429¢ and 318-388¢. Thus 5/4 barely works. The comma is (0, -1, 2) dot (2/1, 3/2, 5/4) = 25/24 = 71¢. A smaller comma can be found with a ratio more in the center of the range, such as 11/9, which yeilds 242/243. Because the direction of the cross product vector depends on the order of the two vectors multiplied, the sign of the comma is arbitrary, and the comma may be a descending ratio. If that happens, invert the comma to make 243/242.  
To verify the validity of this approach, one can find a specific JI ratio that maps to both 2\7 and 5\17 and use it to construct a comma. The ratio must contain only one higher prime, and must have color depth 1. If desired, a ratio of the form p/t can always be found, where p is a higher prime and t is a power of two. Any ratio between 3\14 and 5\14 maps to 2\7, and any ratio between 9\34 and 11\34 maps to 5\17. (The formula is (2n±1)/2d.) This gives us the ranges 257-429¢ and 318-388¢. Thus 5/4 barely works. The comma is (0, -1, 2) dot (2/1, 3/2, 5/4) = 25/24 = 71¢. A smaller comma can be found with a ratio more in the center of the range, such as 11/9, which yeilds 242/243. Because the direction of the cross product vector depends on the order of the two vectors multiplied, the sign of the comma is arbitrary, and the comma may be a descending ratio. If that happens, invert the comma to make 243/242.


Using unreduced edomappings gives the same result. If the basis is (2/1, 3/1, 5/1), we have (7, 11, 16) x (17, 27, 39) = (-3, -1, 2) = 25/24. If the basis is (2/1, 3/1, 11/9)...
Using unreduced edomappings gives the same result. If the basis is (2/1, 3/1, 5/1), we have (7, 11, 16) x (17, 27, 39) = (-3, -1, 2) = 25/24. If the basis is (2/1, 3/1, 11/9)...


If the octave is split,
If the octave is split,
||~  ||~ 12edo ||~ 13edo ||~ 14edo ||~ 15edo ||~ 16edo ||~ 17edo ||~ 18edo ||~ 19edo ||~  ||~  ||~  ||
||~ 12edo ||= -- ||= (P8, P5/7) ||= (P8/2, P5) ||= (P8/3, P5) ||=  ||=  ||=  ||=  ||=  ||=  ||=  ||
||~ 13edo ||=  ||=  ||=  ||=  ||=  ||=  ||=  ||=  ||=  ||=  ||=  ||
||~ 14edo ||=  ||=  ||=  ||=  ||=  ||=  ||=  ||=  ||=  ||=  ||=  ||
||~ 15edo ||=  ||=  ||=  ||=  ||=  ||=  ||=  ||=  ||=  ||=  ||=  ||
||~ 16edo ||=  ||=  ||=  ||=  ||=  ||=  ||=  ||=  ||=  ||=  ||=  ||
||~ 17edo ||=  ||=  ||=  ||=  ||=  ||=  ||=  ||=  ||=  ||=  ||=  ||
||~ 18edo ||=  ||=  ||=  ||=  ||=  ||=  ||=  ||=  ||=  ||=  ||=  ||
||~ 19edo ||=  ||=  ||=  ||=  ||=  ||=  ||=  ||=  ||=  ||=  ||=  ||
||~  ||=  ||=  ||=  ||=  ||=  ||=  ||=  ||=  ||=  ||=  ||=  ||
||~  ||=  ||=  ||=  ||=  ||=  ||=  ||=  ||=  ||=  ||=  ||=  ||
||~  ||=  ||=  ||=  ||=  ||=  ||=  ||=  ||=  ||=  ||=  ||=  ||




Line 987: Line 1,000:
http://www.tallkite.com/misc_files/alt-pergenLister.zip
http://www.tallkite.com/misc_files/alt-pergenLister.zip


The first section (PERGEN and Per/Gen cents) describes each pergen without regard to notational issues. The period and generator's cents are given, assuming a 5th of 700¢ + c. The generator is reduced, e.g. (P8/2, P5) has a generator of 100¢ + c, not 700¢ + c. The next two sections show a possible notation for P and G. The last section shows the unreduced pergen, and for false doubles, a possible single-pair notation. Red indicates problems. Generators of 50¢ or less are in red. Enharmonics of a 3rd or more are in red.  
The first section (PERGEN and Per/Gen cents) describes each pergen without regard to notational issues. The period and generator's cents are given, assuming a 5th of 700¢ + c. The generator is reduced, e.g. (P8/2, P5) has a generator of 100¢ + c, not 700¢ + c. The next two sections show a possible notation for P and G. The last section shows the unreduced pergen, and for false doubles, a possible single-pair notation. Red indicates problems. Generators of 50¢ or less are in red. Enharmonics of a 3rd or more are in red.


Screenshots of the first 38 pergens:
Screenshots of the first 38 pergens:
Line 4,290: Line 4,303:
         &lt;td style="text-align: center;"&gt;C E G#...&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;C E G#...&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;invalid, no G, &lt;br /&gt;
         &lt;td style="text-align: center;"&gt;invalid, no G,&lt;br /&gt;
D or A notes&lt;br /&gt;
D or A notes&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
Line 6,588: Line 6,601:
For example, for 7-edo and 17-edo, the edomappings are (7, 4, 2) and (17, 10, 5). Their cross product is (0, -1, 2). This comma equates two generators with a 5th. The pergen is obviously (P8, P5/2).&lt;br /&gt;
For example, for 7-edo and 17-edo, the edomappings are (7, 4, 2) and (17, 10, 5). Their cross product is (0, -1, 2). This comma equates two generators with a 5th. The pergen is obviously (P8, P5/2).&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
To verify the validity of this approach, one can find a specific JI ratio that maps to both 2\7 and 5\17 and use it to construct a comma. The ratio must contain only one higher prime, and must have color depth 1. If desired, a ratio of the form p/t can always be found, where p is a higher prime and t is a power of two. Any ratio between 3\14 and 5\14 maps to 2\7, and any ratio between 9\34 and 11\34 maps to 5\17. (The formula is (2n±1)/2d.) This gives us the ranges 257-429¢ and 318-388¢. Thus 5/4 barely works. The comma is (0, -1, 2) dot (2/1, 3/2, 5/4) = 25/24 = 71¢. A smaller comma can be found with a ratio more in the center of the range, such as 11/9, which yeilds 242/243. Because the direction of the cross product vector depends on the order of the two vectors multiplied, the sign of the comma is arbitrary, and the comma may be a descending ratio. If that happens, invert the comma to make 243/242. &lt;br /&gt;
To verify the validity of this approach, one can find a specific JI ratio that maps to both 2\7 and 5\17 and use it to construct a comma. The ratio must contain only one higher prime, and must have color depth 1. If desired, a ratio of the form p/t can always be found, where p is a higher prime and t is a power of two. Any ratio between 3\14 and 5\14 maps to 2\7, and any ratio between 9\34 and 11\34 maps to 5\17. (The formula is (2n±1)/2d.) This gives us the ranges 257-429¢ and 318-388¢. Thus 5/4 barely works. The comma is (0, -1, 2) dot (2/1, 3/2, 5/4) = 25/24 = 71¢. A smaller comma can be found with a ratio more in the center of the range, such as 11/9, which yeilds 242/243. Because the direction of the cross product vector depends on the order of the two vectors multiplied, the sign of the comma is arbitrary, and the comma may be a descending ratio. If that happens, invert the comma to make 243/242.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
Using unreduced edomappings gives the same result. If the basis is (2/1, 3/1, 5/1), we have (7, 11, 16) x (17, 27, 39) = (-3, -1, 2) = 25/24. If the basis is (2/1, 3/1, 11/9)...&lt;br /&gt;
Using unreduced edomappings gives the same result. If the basis is (2/1, 3/1, 5/1), we have (7, 11, 16) x (17, 27, 39) = (-3, -1, 2) = 25/24. If the basis is (2/1, 3/1, 11/9)...&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
If the octave is split,&lt;br /&gt;
If the octave is split,&lt;br /&gt;
&lt;br /&gt;
&lt;table class="wiki_table"&gt;
    &lt;tr&gt;
        &lt;th&gt;&lt;br /&gt;
&lt;/th&gt;
        &lt;th&gt;12edo&lt;br /&gt;
&lt;/th&gt;
        &lt;th&gt;13edo&lt;br /&gt;
&lt;/th&gt;
        &lt;th&gt;14edo&lt;br /&gt;
&lt;/th&gt;
        &lt;th&gt;15edo&lt;br /&gt;
&lt;/th&gt;
        &lt;th&gt;16edo&lt;br /&gt;
&lt;/th&gt;
        &lt;th&gt;17edo&lt;br /&gt;
&lt;/th&gt;
        &lt;th&gt;18edo&lt;br /&gt;
&lt;/th&gt;
        &lt;th&gt;19edo&lt;br /&gt;
&lt;/th&gt;
        &lt;th&gt;&lt;br /&gt;
&lt;/th&gt;
        &lt;th&gt;&lt;br /&gt;
&lt;/th&gt;
        &lt;th&gt;&lt;br /&gt;
&lt;/th&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;th&gt;12edo&lt;br /&gt;
&lt;/th&gt;
        &lt;td style="text-align: center;"&gt;--&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;(P8, P5/7)&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;(P8/2, P5)&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;(P8/3, P5)&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;th&gt;13edo&lt;br /&gt;
&lt;/th&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;th&gt;14edo&lt;br /&gt;
&lt;/th&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;th&gt;15edo&lt;br /&gt;
&lt;/th&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;th&gt;16edo&lt;br /&gt;
&lt;/th&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;th&gt;17edo&lt;br /&gt;
&lt;/th&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;th&gt;18edo&lt;br /&gt;
&lt;/th&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;th&gt;19edo&lt;br /&gt;
&lt;/th&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;th&gt;&lt;br /&gt;
&lt;/th&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;th&gt;&lt;br /&gt;
&lt;/th&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;th&gt;&lt;br /&gt;
&lt;/th&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
&lt;/table&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
Line 6,814: Line 7,145:
make a glossary of all bolded terms?&lt;br /&gt;
make a glossary of all bolded terms?&lt;br /&gt;
link from: ups and downs page, Kite Giedraitis page, MOS scale names page,&lt;br /&gt;
link from: ups and downs page, Kite Giedraitis page, MOS scale names page,&lt;br /&gt;
&lt;!-- ws:start:WikiTextUrlRule:8460:http://xenharmonic.wikispaces.com/Proposed+names+for+rank+2+temperaments --&gt;&lt;a href="http://xenharmonic.wikispaces.com/Proposed+names+for+rank+2+temperaments"&gt;http://xenharmonic.wikispaces.com/Proposed+names+for+rank+2+temperaments&lt;/a&gt;&lt;!-- ws:end:WikiTextUrlRule:8460 --&gt;&lt;br /&gt;
&lt;!-- ws:start:WikiTextUrlRule:8919:http://xenharmonic.wikispaces.com/Proposed+names+for+rank+2+temperaments --&gt;&lt;a href="http://xenharmonic.wikispaces.com/Proposed+names+for+rank+2+temperaments"&gt;http://xenharmonic.wikispaces.com/Proposed+names+for+rank+2+temperaments&lt;/a&gt;&lt;!-- ws:end:WikiTextUrlRule:8919 --&gt;&lt;br /&gt;
&lt;!-- ws:start:WikiTextUrlRule:8461:http://xenharmonic.wikispaces.com/Tour+of+Regular+Temperaments --&gt;&lt;a href="http://xenharmonic.wikispaces.com/Tour+of+Regular+Temperaments"&gt;http://xenharmonic.wikispaces.com/Tour+of+Regular+Temperaments&lt;/a&gt;&lt;!-- ws:end:WikiTextUrlRule:8461 --&gt;&lt;br /&gt;
&lt;!-- ws:start:WikiTextUrlRule:8920:http://xenharmonic.wikispaces.com/Tour+of+Regular+Temperaments --&gt;&lt;a href="http://xenharmonic.wikispaces.com/Tour+of+Regular+Temperaments"&gt;http://xenharmonic.wikispaces.com/Tour+of+Regular+Temperaments&lt;/a&gt;&lt;!-- ws:end:WikiTextUrlRule:8920 --&gt;&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:108:&amp;lt;h3&amp;gt; --&gt;&lt;h3 id="toc24"&gt;&lt;a name="Further Discussion-Supplemental materials*-Notaion guide PDF"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:108 --&gt;Notaion guide PDF&lt;/h3&gt;
&lt;!-- ws:start:WikiTextHeadingRule:108:&amp;lt;h3&amp;gt; --&gt;&lt;h3 id="toc24"&gt;&lt;a name="Further Discussion-Supplemental materials*-Notaion guide PDF"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:108 --&gt;Notaion guide PDF&lt;/h3&gt;
  &lt;br /&gt;
  &lt;br /&gt;
This PDF is a rank-2 notation guide that shows the full lattice for the first 15 pergens, up through the third-splits block. It includes alternate enharmonics for many pergens.&lt;br /&gt;
This PDF is a rank-2 notation guide that shows the full lattice for the first 15 pergens, up through the third-splits block. It includes alternate enharmonics for many pergens.&lt;br /&gt;
&lt;!-- ws:start:WikiTextUrlRule:8462:http://www.tallkite.com/misc_files/pergens.pdf --&gt;&lt;a class="wiki_link_ext" href="http://www.tallkite.com/misc_files/pergens.pdf" rel="nofollow"&gt;http://www.tallkite.com/misc_files/pergens.pdf&lt;/a&gt;&lt;!-- ws:end:WikiTextUrlRule:8462 --&gt;&lt;br /&gt;
&lt;!-- ws:start:WikiTextUrlRule:8921:http://www.tallkite.com/misc_files/pergens.pdf --&gt;&lt;a class="wiki_link_ext" href="http://www.tallkite.com/misc_files/pergens.pdf" rel="nofollow"&gt;http://www.tallkite.com/misc_files/pergens.pdf&lt;/a&gt;&lt;!-- ws:end:WikiTextUrlRule:8921 --&gt;&lt;br /&gt;
(screenshot)&lt;br /&gt;
(screenshot)&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
Line 6,826: Line 7,157:
  &lt;br /&gt;
  &lt;br /&gt;
Alt-pergenLister lists out thousands of pergens, and suggests periods, generators and enharmonics for each one. Alternate enharmonics are not listed, but single-pair notation for false-double pergens is. It can also list only those pergens supported by a specific edo. Written in Jesusonic, runs inside Reaper.&lt;br /&gt;
Alt-pergenLister lists out thousands of pergens, and suggests periods, generators and enharmonics for each one. Alternate enharmonics are not listed, but single-pair notation for false-double pergens is. It can also list only those pergens supported by a specific edo. Written in Jesusonic, runs inside Reaper.&lt;br /&gt;
&lt;!-- ws:start:WikiTextUrlRule:8463:http://www.tallkite.com/misc_files/alt-pergenLister.zip --&gt;&lt;a class="wiki_link_ext" href="http://www.tallkite.com/misc_files/alt-pergenLister.zip" rel="nofollow"&gt;http://www.tallkite.com/misc_files/alt-pergenLister.zip&lt;/a&gt;&lt;!-- ws:end:WikiTextUrlRule:8463 --&gt;&lt;br /&gt;
&lt;!-- ws:start:WikiTextUrlRule:8922:http://www.tallkite.com/misc_files/alt-pergenLister.zip --&gt;&lt;a class="wiki_link_ext" href="http://www.tallkite.com/misc_files/alt-pergenLister.zip" rel="nofollow"&gt;http://www.tallkite.com/misc_files/alt-pergenLister.zip&lt;/a&gt;&lt;!-- ws:end:WikiTextUrlRule:8922 --&gt;&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
The first section (PERGEN and Per/Gen cents) describes each pergen without regard to notational issues. The period and generator's cents are given, assuming a 5th of 700¢ + c. The generator is reduced, e.g. (P8/2, P5) has a generator of 100¢ + c, not 700¢ + c. The next two sections show a possible notation for P and G. The last section shows the unreduced pergen, and for false doubles, a possible single-pair notation. Red indicates problems. Generators of 50¢ or less are in red. Enharmonics of a 3rd or more are in red. &lt;br /&gt;
The first section (PERGEN and Per/Gen cents) describes each pergen without regard to notational issues. The period and generator's cents are given, assuming a 5th of 700¢ + c. The generator is reduced, e.g. (P8/2, P5) has a generator of 100¢ + c, not 700¢ + c. The next two sections show a possible notation for P and G. The last section shows the unreduced pergen, and for false doubles, a possible single-pair notation. Red indicates problems. Generators of 50¢ or less are in red. Enharmonics of a 3rd or more are in red.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
Screenshots of the first 38 pergens:&lt;br /&gt;
Screenshots of the first 38 pergens:&lt;br /&gt;
&lt;!-- ws:start:WikiTextLocalImageRule:5140:&amp;lt;img src=&amp;quot;/file/view/alt-pergenLister.png/624838213/704x460/alt-pergenLister.png&amp;quot; alt=&amp;quot;&amp;quot; title=&amp;quot;&amp;quot; style=&amp;quot;height: 460px; width: 704px;&amp;quot; /&amp;gt; --&gt;&lt;img src="/file/view/alt-pergenLister.png/624838213/704x460/alt-pergenLister.png" alt="alt-pergenLister.png" title="alt-pergenLister.png" style="height: 460px; width: 704px;" /&gt;&lt;!-- ws:end:WikiTextLocalImageRule:5140 --&gt;&lt;br /&gt;
&lt;!-- ws:start:WikiTextLocalImageRule:5454:&amp;lt;img src=&amp;quot;/file/view/alt-pergenLister.png/624838213/704x460/alt-pergenLister.png&amp;quot; alt=&amp;quot;&amp;quot; title=&amp;quot;&amp;quot; style=&amp;quot;height: 460px; width: 704px;&amp;quot; /&amp;gt; --&gt;&lt;img src="/file/view/alt-pergenLister.png/624838213/704x460/alt-pergenLister.png" alt="alt-pergenLister.png" title="alt-pergenLister.png" style="height: 460px; width: 704px;" /&gt;&lt;!-- ws:end:WikiTextLocalImageRule:5454 --&gt;&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
Listing all valid pergens is not a trivial task, like listing all valid edos or all valid MOS scales. Not all combinations of octave fractions and multigen fractions make a valid pergen. The search for rank-2 pergens can be done by looping through all possible square mappings [(x, y), (0, z)], and using the formula (P8/x, (i·z - y, x) / xz). While x is always positive and z is always nonzero, y can take on any value. For any x and z, y can be constrained to produce a reasonable cents value for 3/1. Let T be the tempered twefth 3/1. The mapping says T = y·P + z·G = y·P8/x + z·G. Thus y = x·(T/P8 - z·G/P8). We adopt the convention that G is less than half an octave. We constrain T so that the 5th is between 600¢ and 800¢, which certainly includes anything that sounds like a 5th. Thus T is between 3/2 and 5/3 of an octave. We assume that if the octave is stretched, the ranges of T and G will be stretched along with it. The outer ranges of y can now be computed, using the floor function to round down to the nearest integer, and the ceiling function to round up:&lt;br /&gt;
Listing all valid pergens is not a trivial task, like listing all valid edos or all valid MOS scales. Not all combinations of octave fractions and multigen fractions make a valid pergen. The search for rank-2 pergens can be done by looping through all possible square mappings [(x, y), (0, z)], and using the formula (P8/x, (i·z - y, x) / xz). While x is always positive and z is always nonzero, y can take on any value. For any x and z, y can be constrained to produce a reasonable cents value for 3/1. Let T be the tempered twefth 3/1. The mapping says T = y·P + z·G = y·P8/x + z·G. Thus y = x·(T/P8 - z·G/P8). We adopt the convention that G is less than half an octave. We constrain T so that the 5th is between 600¢ and 800¢, which certainly includes anything that sounds like a 5th. Thus T is between 3/2 and 5/3 of an octave. We assume that if the octave is stretched, the ranges of T and G will be stretched along with it. The outer ranges of y can now be computed, using the floor function to round down to the nearest integer, and the ceiling function to round up:&lt;br /&gt;