Kite's thoughts on pergens: Difference between revisions

Wikispaces>TallKite
**Imported revision 627927613 - Original comment: **
Wikispaces>TallKite
**Imported revision 627970489 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:TallKite|TallKite]] and made on <tt>2018-03-22 23:51:59 UTC</tt>.<br>
: This revision was by author [[User:TallKite|TallKite]] and made on <tt>2018-03-24 03:59:45 UTC</tt>.<br>
: The original revision id was <tt>627927613</tt>.<br>
: The original revision id was <tt>627970489</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
Line 918: Line 918:
Just as a pair of edos and a prime subgroup can specify a rank-2 temperament, a pair of edos can specify a rank-2 pergen. For N-edo &amp; N'-edo, m = GCD (N,N'). The period P equals both (N/m)\N and (N'/m)\N'. For example, for 12edo and 16edo, m = 4, and the period is both 3\12 and 4\16, i.e. a quarter-8ve.
Just as a pair of edos and a prime subgroup can specify a rank-2 temperament, a pair of edos can specify a rank-2 pergen. For N-edo &amp; N'-edo, m = GCD (N,N'). The period P equals both (N/m)\N and (N'/m)\N'. For example, for 12edo and 16edo, m = 4, and the period is both 3\12 and 4\16, i.e. a quarter-8ve.


For each edo, find the nearest edomapping (also known as the patent val) for the 2.3 subgroup. Form a 2x2 matrix from these edomappings. Let d be the determinant of this matrix. If |d| = m, the generator is the 5th, and the pergen is simply (P8/m, P5).
For each edo, find the nearest edomapping (also known as the patent val) for the 2.3 subgroup. Sometimes the second-nearest edomapping is preferred, more on this later. Form a 2x2 matrix from these edomappings. Let d be the determinant of this matrix. If |d| = m or |d| = 0, the generator is the 5th, and the pergen is simply (P8/m, P5).


For example, 12edo's 3-limit edomapping is (12, 19), and 16edo's is (16, 25). The determinant of [(12 19) (16 25)] is -4, thus the pergen for 12edo and 16edo is (P8/4, P5). To make the calculations easier, octave-reduced edomappings can be used, which indicate the number of edosteps that 3/2 maps to, not 3/1. For 12 and 16, we have [(12 7) (16 9)], and d is again -4.
For example, 12edo's 3-limit edomapping is (12, 19), and 16edo's is (16, 25). The determinant of [(12 19) (16 25)] is -4, thus the pergen for 12edo and 16edo is (P8/4, P5). To make the calculations easier, octave-reduced edomappings can be used, which indicate the number of edosteps that 3/2 maps to, not 3/1. For 12 and 16, we have [(12 7) (16 9)], and d is again -4.


Sometimes the second-nearest edomapping is preferred, more on this later.
If |d| ≠ m, P5 is not the generator, and we must find the multigen. Take the ratio of the two edos N/N' and reduce it by m. In the scale tree, find the smallest ancestor of this ratio. Choose one of the four (more on this below), and let this new ratio be g/g'. The generator G maps to both g\N and g'\N'. The two edos come closest to coinciding here.


If |d| ≠ m, we must find the multigen. Take the ratio of the two edos N/N' and reduce it by m. In the scale tree, find the two ancestors and the two descendants of this ratio. Choose one of the four (more on this below), and let this new ratio be g/g'. The generator G maps to both g\N and g'\N'. The two edos come closest to coinciding here.
For example, for 7-edo and 17-edo, m = 1 but d = 2. The smallest ancestor of 7/17 is 2/5. The generator maps to both 2\7 and 5\17, which are both neutral 3rds. Using the other ancestor always gives the octave inverses, in this case 5/12 giving 5\7 and 12\17, which are neutral 6ths. 2\7 = 343¢ and 5\17 = 353¢, and their difference is only 1\N", where N" = LCM (N, N'). This 10¢ difference is the least difference between any 7edo note and any 17edo note, except that the two neutral 6ths differ by the same 10¢, and of course some note pairs coincide exactly, such as 0\7 and 0\17.


For example, for 7-edo and 17-edo, m = 1 but d = 2. The ancestors and descendants of 7/17 are 2/5, 5/12, 9/22 and 12/29. Choose the smallest for now, 2/5. The generator maps to both 2\7 and 5\17, which are both neutral 3rds. Using the other ancestor always gives the octave inverses, in this case 5/12 giving 5\7 and 12\17, which are neutral 6ths. 2\7 = 343¢ and 5\17 = 353¢, and their difference is only ~10¢ = 1\119. (119 = LCM (7, 17)). This 10¢ is the least difference between any 7edo note and any 17edo note, except that the two neutral 6ths differ by the same 10¢, and of course excluding note pairs that coincide exactly such as 0\7 and 0\17.
Next we must find a comma that both edos temper out, and find the pergen from that comma. To do this, extend the edomappings to three entries. Rather than finding the mapping of 5/4 or 7/4, use the generator we found from the scale tree, without concerning ourselves about which ratio it corresponds to, in keeping with the higher-prime-agnostic nature of pergens. Treating the two edomappings as 3-D vectors, take the cross product of them, whch makes a new vector which is perpendicular to both. Thus the dot product of this new vector with either edomapping is zero. Treating this new vector as a monzo, since the dot product is zero, both edos map this monzo to zero edosteps. In other words, they temper out this monzo, and this monzo is the comma we're looking for.
 
Next we must find a comma that both edos temper out, and find the pergen from that comma. To do this, we extend the edomappings to three entries. Rather than finding the mapping of 5/4 or 7/4, we use the generator we found earlier, without concerning ourselves about which ratio it corresponds to, in keeping with the higher-prime-agnostic nature of pergens. Treating the two edomappings as 3-D vectors, take the cross product of them, whch makes a new vector which is perpendicular to both. Thus the dot product of this vector with either edomapping is zero. Treating this new vector as a monzo, since the dot product is zero, both edos map this monzo to zero edosteps. In other words, they temper out this monzo, and this monzo is the comma we're looking for.


For example, for 7-edo and 17-edo, the edomappings are (7, 4, 2) and (17, 10, 5). Their cross product is (0, -1, 2). This comma equates two generators with a 5th. The pergen is obviously (P8, P5/2).
For example, for 7-edo and 17-edo, the edomappings are (7, 4, 2) and (17, 10, 5). Their cross product is (0, -1, 2). This comma equates two generators with a 5th. The pergen is obviously (P8, P5/2).


To verify the validity of this approach, one can find a specific JI ratio that maps to both 2\7 and 5\17 and use it to construct a comma. The ratio must contain only one higher prime, and must have color depth 1. If desired, a ratio of the form p/t can always be found, where p is a higher prime and t is a power of two. Any ratio between 3\14 and 5\14 maps to 2\7, and any ratio between 9\34 and 11\34 maps to 5\17. (The formula is (2n±1)/2d.) This gives us the ranges 257-429¢ and 318-388¢. Thus 5/4 barely works. The comma is (0, -1, 2) dot (2/1, 3/2, 5/4) = 25/24 = 71¢. A smaller comma can be found with a ratio more in the center of the range, such as 11/9, which yeilds 242/243. Because the direction of the cross product vector depends on the order of the two vectors multiplied, the sign of the comma is arbitrary, and the comma may be a descending ratio. If that happens, invert the comma to make 243/242.
To verify the validity of this approach, one can find a specific JI ratio that maps to both 2\7 and 5\17 and use it to construct a comma. The ratio must contain only one higher prime, and must have color depth 1. If desired, a ratio of the form p/t can always be found, where p is a higher prime and t is a power of two. Any ratio between 3\14 and 5\14 maps to 2\7, and any ratio between 9\34 and 11\34 maps to 5\17. (The formula is (2n±1)/2d.) This gives us the ranges 257-429¢ and 318-388¢. Thus 5/4 barely works. The comma is (0, -1, 2) dot (2/1, 3/2, 5/4) = 25/24. 11/9 also works, it yields 243/242.
 
Using unreduced edomappings gives the same result. If the basis is (2/1, 3/1, 5/1), we have (7, 11, 16) x (17, 27, 39) = (-3, -1, 2) = 25/24. If the basis is (2/1, 3/1, 11/9)...
 
If the octave is split,


||~  ||~ 12edo ||~ 13edo ||~ 14edo ||~ 15edo ||~ 16edo ||~ 17edo ||~ 18edo ||~ 19edo ||~  ||~  ||~  ||
If the octave is split,...
||~ 12edo ||= -- ||= (P8, P5/7) ||= (P8/2, P5) ||= (P8/3, P5) ||=  ||=  ||=  ||=  ||=  ||=  ||=  ||
||~ 13edo ||=  ||=  ||=  ||=  ||=  ||=  ||=  ||=  ||=  ||=  ||=  ||
||~ 14edo ||=  ||=  ||=  ||=  ||=  ||=  ||=  ||=  ||=  ||=  ||=  ||
||~ 15edo ||=  ||=  ||=  ||=  ||=  ||=  ||=  ||=  ||=  ||=  ||=  ||
||~ 16edo ||=  ||=  ||=  ||=  ||=  ||=  ||=  ||=  ||=  ||=  ||=  ||
||~ 17edo ||=  ||=  ||=  ||=  ||=  ||=  ||=  ||=  ||=  ||=  ||=  ||
||~ 18edo ||=  ||=  ||=  ||=  ||=  ||=  ||=  ||=  ||=  ||=  ||=  ||
||~ 19edo ||=  ||=  ||=  ||=  ||=  ||=  ||=  ||=  ||=  ||=  ||=  ||
||~  ||=  ||=  ||=  ||=  ||=  ||=  ||=  ||=  ||=  ||=  ||=  ||
||~  ||=  ||=  ||=  ||=  ||=  ||=  ||=  ||=  ||=  ||=  ||=  ||
||~  ||=  ||=  ||=  ||=  ||=  ||=  ||=  ||=  ||=  ||=  ||=  ||


 
The closer two edos are in the scale tree, the simpler the pergen they make:
//If the octave is split, alternate generators are found by adding periods, or by subtracting periods and inverting. One generator is chosen (bolded in the table) and stacked until it totals some voicing of the 4th or 5th of both edos, or if the octave is split, some appropriate imperfect multigen. Further stacking, or stacking an alternate generator, sometimes creates a 2nd pergen.//
||~   ||~ 12-edo ||~ 13b-edo ||~ 14-edo ||~ 15-edo ||~ 16-edo ||~ 17-edo ||~ 18b-edo ||~ 19-edo ||~ 20-edo ||
 
||~ 13b-edo ||= (P8, P5/7) ||=   ||=   ||=   ||=   ||=   ||=   ||=   ||=   ||
 
||~ 14-edo ||= (P8/2, P5) ||= (P8, P4/6) ||||=   ||=   ||=   ||=   ||=   ||=   ||
||~ edos ||~ octave split ||~ period ||~ generator(s) ||~ 4th's keyspans ||~ 5th's keyspans ||~ pergen ||
||~ 15-edo ||= (P8/3, P5) ||= (P8, W&lt;span style="vertical-align: super;"&gt;5&lt;/span&gt;P5/12) ||= (P8, P4/6) ||=   ||=   ||=   ||=   ||||=   ||
||= 7 &amp; 12 ||= 1 ||= 7\7 = 12\12 ||= 3\7 = 5\12 ||= 3\7 = 5\12 ||= 4\7 = 7\12 ||= unsplit ||
||~ 16-edo ||= (P8/4, P5) ||= (P8, P12/5) ||= (P8/2, P5) ||= (P8, P5/9) ||=   ||=  ||=   ||=   ||=   ||
||= 8 &amp; 12 ||= 4 ||= 2\8 = 3\12 ||= 1\8 = 1\12, 1\8 = 2\12,
||~ 17-edo ||= (P8, P5) ||= (P8, WWP5/11) ||= (P8, P11/4) ||= (P8, P11/3) ||= (P8/2, P4/7) ||=   ||=  ||=   ||=   ||
3\8 = 4\12, **3\8 = 5\12** ||= 3\8 = 5\12 ||= 5\8 = 7\12 ||= quarter-8ve ||
||~ 18b-edo ||= (P8/6, P5) ||= (P8, P12/4) ||= (P8/2, P4/2) ||= (P8/3, P12/4) ||= (P8/2, P5) ||= (P8, P5/10) ||=  ||=   ||=   ||
||= 9 &amp; 12 ||= 3 ||= 3\9 = 4\12 ||= 1\9 = 1\12, 2\9 = 3\12, **4\9 = 5\12** ||=  ||= 5\9 = 7\12 ||= third-8ve ||
||~ 19-edo ||= (P8, P5) ||= (P8, P12/10) ||= (P8, P4/2) ||= (P8, P12/6) ||= (P8, P12/5) ||= (P8, P11/3) ||= (P8, P4/8) ||=   ||=   ||
||= 10 &amp; 12 ||= 2 ||= 5\10 = 6\12 ||= 1\10 = 1\12, **4\10 = 5\12** ||=  ||= 6\10 = 7\12 ||= half-8ve ||
||~ 20-edo ||= (P8/4, P5) ||= (P8, WWP4/16) ||= (P8/2, P5/4) ||= (P8/5, P5) ||= (P8/4, P5/3) ||= (P8, P11/4) ||= (P8/2, P4/8) ||= (P8, P4/8) ||=   ||
||= 11 &amp; 12 ||= 1 ||= 11\11 = 12\12 ||= 1\11 = 1\12 ||=  ||= 6\11 = 7\12 ||= fifth-4th ||
||~ 21-edo ||= (P8/3, P5) ||= (P8, W&lt;span style="vertical-align: super;"&gt;3&lt;/span&gt;P4/9) ||= (P8/7, P5) ||= (P8/3, P4/3) ||= (P8, P5/3) ||= (P8, P11/6) ||= (P8/3, P5/2) ||= (P8, P11/3) ||= (P8, P5/12) ||
||= 12 &amp; 13 ||= 1 ||= 12\12 = 13\13 ||= 1\12 = 1\13 ||=   ||= 7\12 = 8\13 ||= fifth-4th ||
||~ 22-edo ||= (P8/2, P5) ||= (P8, W&lt;span style="vertical-align: super;"&gt;3&lt;/span&gt;P4/15) ||= (P8/2, P4/3) ||= (P8, P4/3) ||= (P8/2, P12/5) ||= (P8, P5) ||= (P8/2, P12/7) ||= (P8, P12/5) ||= (P8/2, M2/4) ||
||= 12 &amp; 13b ||= 1 ||= 12\12 = 13\13 ||= 1\12 = 1\13 ||=   ||= 7\12 = 7\13 ||= seventh-5th ||
||~ 23-edo ||= (P8, P4/5) ||= (P8, WWP4/8) ||= (P8, P4/2) ||= (P8, P12/12) ||= (P8, P5) ||= (P8, P12/9) ||= (P8, P12/4) ||= (P8, P12/6) ||= (P8, W&lt;span style="vertical-align: super;"&gt;5&lt;/span&gt;P5/16) ||
||= 12 &amp; 15 ||= 3 ||= 4\12 = 5\15 ||= 1\12 = 1\15, 3\12 = 4\15, **5\12 = 6\15** ||=   ||= 7\12 = 9\15 ||= third-8ve ||
||~ 24-edo ||= (P8/12, P5) ||= (P8, W&lt;span style="vertical-align: super;"&gt;6&lt;/span&gt;P4/14) ||= (P8/2, P4/2) ||= (P8/3, P4/2) ||= (P8/8, P5) ||= (P8, P5/2) ||= (P8/6, P4/2) ||= (P8, P4/2) ||= (P8/4, P4/2) ||
||= 12 &amp; 17 ||= 1 ||= 12\12 = 17\17 ||= 5\12 = 7\17 ||=   ||= 7\12 = 10\17 ||= unsplit ||
||= 15 &amp; 17 ||= 1 ||= 15\15 = 17\17 ||= 7\15 = 8\17 ||=   ||= 9\15 = 10\17 ||= third-11th ||
||= 22 &amp; 24 ||= 2 ||= 11\22 = 12\24 ||= **1\22 = 1\24**, 10\22 = 11\24 ||=   ||= 13\22 = 14\24 ||= half-8ve quarter-tone ||


A specific pergen can be converted to an edo pair by finding the range of its generator cents in the [[pergen#Further%20Discussion-Notating%20tunings%20with%20an%20arbitrary%20generator|arbitrary generator]] table, looking up that cents in the scale tree, and finding a conveniently-sized parent-child pair of edos in that range. For example, half-5th has a generator in the 320-360¢ range, and that part of the scale tree has among others 2\7, 3\10 and 5\17. Any two of those three edos defines (P8, P5/2).
A specific pergen can be converted to an edo pair by finding the range of its generator cents in the [[pergen#Further%20Discussion-Notating%20tunings%20with%20an%20arbitrary%20generator|arbitrary generator]] table, looking up that cents in the scale tree, and finding a conveniently-sized parent-child pair of edos in that range. For example, half-5th has a generator in the 320-360¢ range, and that part of the scale tree has among others 2\7, 3\10 and 5\17. Any two of those three edos defines (P8, P5/2).
Line 6,587: Line 6,567:
Just as a pair of edos and a prime subgroup can specify a rank-2 temperament, a pair of edos can specify a rank-2 pergen. For N-edo &amp;amp; N'-edo, m = GCD (N,N'). The period P equals both (N/m)\N and (N'/m)\N'. For example, for 12edo and 16edo, m = 4, and the period is both 3\12 and 4\16, i.e. a quarter-8ve.&lt;br /&gt;
Just as a pair of edos and a prime subgroup can specify a rank-2 temperament, a pair of edos can specify a rank-2 pergen. For N-edo &amp;amp; N'-edo, m = GCD (N,N'). The period P equals both (N/m)\N and (N'/m)\N'. For example, for 12edo and 16edo, m = 4, and the period is both 3\12 and 4\16, i.e. a quarter-8ve.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
For each edo, find the nearest edomapping (also known as the patent val) for the 2.3 subgroup. Form a 2x2 matrix from these edomappings. Let d be the determinant of this matrix. If |d| = m, the generator is the 5th, and the pergen is simply (P8/m, P5).&lt;br /&gt;
For each edo, find the nearest edomapping (also known as the patent val) for the 2.3 subgroup. Sometimes the second-nearest edomapping is preferred, more on this later. Form a 2x2 matrix from these edomappings. Let d be the determinant of this matrix. If |d| = m or |d| = 0, the generator is the 5th, and the pergen is simply (P8/m, P5).&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
For example, 12edo's 3-limit edomapping is (12, 19), and 16edo's is (16, 25). The determinant of [(12 19) (16 25)] is -4, thus the pergen for 12edo and 16edo is (P8/4, P5). To make the calculations easier, octave-reduced edomappings can be used, which indicate the number of edosteps that 3/2 maps to, not 3/1. For 12 and 16, we have [(12 7) (16 9)], and d is again -4.&lt;br /&gt;
For example, 12edo's 3-limit edomapping is (12, 19), and 16edo's is (16, 25). The determinant of [(12 19) (16 25)] is -4, thus the pergen for 12edo and 16edo is (P8/4, P5). To make the calculations easier, octave-reduced edomappings can be used, which indicate the number of edosteps that 3/2 maps to, not 3/1. For 12 and 16, we have [(12 7) (16 9)], and d is again -4.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
Sometimes the second-nearest edomapping is preferred, more on this later.&lt;br /&gt;
If |d| ≠ m, P5 is not the generator, and we must find the multigen. Take the ratio of the two edos N/N' and reduce it by m. In the scale tree, find the smallest ancestor of this ratio. Choose one of the four (more on this below), and let this new ratio be g/g'. The generator G maps to both g\N and g'\N'. The two edos come closest to coinciding here.&lt;br /&gt;
&lt;br /&gt;
If |d| ≠ m, we must find the multigen. Take the ratio of the two edos N/N' and reduce it by m. In the scale tree, find the two ancestors and the two descendants of this ratio. Choose one of the four (more on this below), and let this new ratio be g/g'. The generator G maps to both g\N and g'\N'. The two edos come closest to coinciding here.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
For example, for 7-edo and 17-edo, m = 1 but d = 2. The ancestors and descendants of 7/17 are 2/5, 5/12, 9/22 and 12/29. Choose the smallest for now, 2/5. The generator maps to both 2\7 and 5\17, which are both neutral 3rds. Using the other ancestor always gives the octave inverses, in this case 5/12 giving 5\7 and 12\17, which are neutral 6ths. 2\7 = 343¢ and 5\17 = 353¢, and their difference is only ~10¢ = 1\119. (119 = LCM (7, 17)). This 10¢ is the least difference between any 7edo note and any 17edo note, except that the two neutral 6ths differ by the same 10¢, and of course excluding note pairs that coincide exactly such as 0\7 and 0\17.&lt;br /&gt;
For example, for 7-edo and 17-edo, m = 1 but d = 2. The smallest ancestor of 7/17 is 2/5. The generator maps to both 2\7 and 5\17, which are both neutral 3rds. Using the other ancestor always gives the octave inverses, in this case 5/12 giving 5\7 and 12\17, which are neutral 6ths. 2\7 = 343¢ and 5\17 = 353¢, and their difference is only 1\N&amp;quot;, where N&amp;quot; = LCM (N, N'). This 10¢ difference is the least difference between any 7edo note and any 17edo note, except that the two neutral 6ths differ by the same 10¢, and of course some note pairs coincide exactly, such as 0\7 and 0\17.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
Next we must find a comma that both edos temper out, and find the pergen from that comma. To do this, we extend the edomappings to three entries. Rather than finding the mapping of 5/4 or 7/4, we use the generator we found earlier, without concerning ourselves about which ratio it corresponds to, in keeping with the higher-prime-agnostic nature of pergens. Treating the two edomappings as 3-D vectors, take the cross product of them, whch makes a new vector which is perpendicular to both. Thus the dot product of this vector with either edomapping is zero. Treating this new vector as a monzo, since the dot product is zero, both edos map this monzo to zero edosteps. In other words, they temper out this monzo, and this monzo is the comma we're looking for.&lt;br /&gt;
Next we must find a comma that both edos temper out, and find the pergen from that comma. To do this, extend the edomappings to three entries. Rather than finding the mapping of 5/4 or 7/4, use the generator we found from the scale tree, without concerning ourselves about which ratio it corresponds to, in keeping with the higher-prime-agnostic nature of pergens. Treating the two edomappings as 3-D vectors, take the cross product of them, whch makes a new vector which is perpendicular to both. Thus the dot product of this new vector with either edomapping is zero. Treating this new vector as a monzo, since the dot product is zero, both edos map this monzo to zero edosteps. In other words, they temper out this monzo, and this monzo is the comma we're looking for.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
For example, for 7-edo and 17-edo, the edomappings are (7, 4, 2) and (17, 10, 5). Their cross product is (0, -1, 2). This comma equates two generators with a 5th. The pergen is obviously (P8, P5/2).&lt;br /&gt;
For example, for 7-edo and 17-edo, the edomappings are (7, 4, 2) and (17, 10, 5). Their cross product is (0, -1, 2). This comma equates two generators with a 5th. The pergen is obviously (P8, P5/2).&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
To verify the validity of this approach, one can find a specific JI ratio that maps to both 2\7 and 5\17 and use it to construct a comma. The ratio must contain only one higher prime, and must have color depth 1. If desired, a ratio of the form p/t can always be found, where p is a higher prime and t is a power of two. Any ratio between 3\14 and 5\14 maps to 2\7, and any ratio between 9\34 and 11\34 maps to 5\17. (The formula is (2n±1)/2d.) This gives us the ranges 257-429¢ and 318-388¢. Thus 5/4 barely works. The comma is (0, -1, 2) dot (2/1, 3/2, 5/4) = 25/24 = 71¢. A smaller comma can be found with a ratio more in the center of the range, such as 11/9, which yeilds 242/243. Because the direction of the cross product vector depends on the order of the two vectors multiplied, the sign of the comma is arbitrary, and the comma may be a descending ratio. If that happens, invert the comma to make 243/242.&lt;br /&gt;
To verify the validity of this approach, one can find a specific JI ratio that maps to both 2\7 and 5\17 and use it to construct a comma. The ratio must contain only one higher prime, and must have color depth 1. If desired, a ratio of the form p/t can always be found, where p is a higher prime and t is a power of two. Any ratio between 3\14 and 5\14 maps to 2\7, and any ratio between 9\34 and 11\34 maps to 5\17. (The formula is (2n±1)/2d.) This gives us the ranges 257-429¢ and 318-388¢. Thus 5/4 barely works. The comma is (0, -1, 2) dot (2/1, 3/2, 5/4) = 25/24. 11/9 also works, it yields 243/242.&lt;br /&gt;
&lt;br /&gt;
Using unreduced edomappings gives the same result. If the basis is (2/1, 3/1, 5/1), we have (7, 11, 16) x (17, 27, 39) = (-3, -1, 2) = 25/24. If the basis is (2/1, 3/1, 11/9)...&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
If the octave is split,&lt;br /&gt;
If the octave is split,...&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
The closer two edos are in the scale tree, the simpler the pergen they make:&lt;br /&gt;




Line 6,613: Line 6,590:
         &lt;th&gt;&lt;br /&gt;
         &lt;th&gt;&lt;br /&gt;
&lt;/th&gt;
&lt;/th&gt;
         &lt;th&gt;12edo&lt;br /&gt;
         &lt;th&gt;12-edo&lt;br /&gt;
&lt;/th&gt;
        &lt;th&gt;13edo&lt;br /&gt;
&lt;/th&gt;
&lt;/th&gt;
         &lt;th&gt;14edo&lt;br /&gt;
         &lt;th&gt;13b-edo&lt;br /&gt;
&lt;/th&gt;
&lt;/th&gt;
         &lt;th&gt;15edo&lt;br /&gt;
         &lt;th&gt;14-edo&lt;br /&gt;
&lt;/th&gt;
&lt;/th&gt;
         &lt;th&gt;16edo&lt;br /&gt;
         &lt;th&gt;15-edo&lt;br /&gt;
&lt;/th&gt;
&lt;/th&gt;
         &lt;th&gt;17edo&lt;br /&gt;
         &lt;th&gt;16-edo&lt;br /&gt;
&lt;/th&gt;
&lt;/th&gt;
         &lt;th&gt;18edo&lt;br /&gt;
         &lt;th&gt;17-edo&lt;br /&gt;
&lt;/th&gt;
&lt;/th&gt;
         &lt;th&gt;19edo&lt;br /&gt;
         &lt;th&gt;18b-edo&lt;br /&gt;
&lt;/th&gt;
&lt;/th&gt;
         &lt;th&gt;&lt;br /&gt;
         &lt;th&gt;19-edo&lt;br /&gt;
&lt;/th&gt;
&lt;/th&gt;
         &lt;th&gt;&lt;br /&gt;
         &lt;th&gt;20-edo&lt;br /&gt;
&lt;/th&gt;
        &lt;th&gt;&lt;br /&gt;
&lt;/th&gt;
&lt;/th&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;th&gt;12edo&lt;br /&gt;
         &lt;th&gt;13b-edo&lt;br /&gt;
&lt;/th&gt;
&lt;/th&gt;
        &lt;td style="text-align: center;"&gt;--&lt;br /&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;(P8, P5/7)&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;(P8, P5/7)&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;(P8/2, P5)&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;(P8/3, P5)&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
Line 6,663: Line 6,632:
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;th&gt;13edo&lt;br /&gt;
         &lt;th&gt;14-edo&lt;br /&gt;
&lt;/th&gt;
&lt;/th&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;(P8/2, P5)&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;(P8, P4/6)&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
Line 6,689: Line 6,654:
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;th&gt;14edo&lt;br /&gt;
         &lt;th&gt;15-edo&lt;br /&gt;
&lt;/th&gt;
&lt;/th&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;(P8/3, P5)&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;(P8, W&lt;span style="vertical-align: super;"&gt;5&lt;/span&gt;P5/12)&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;(P8, P4/6)&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
Line 6,715: Line 6,676:
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;th&gt;15edo&lt;br /&gt;
         &lt;th&gt;16-edo&lt;br /&gt;
&lt;/th&gt;
&lt;/th&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;(P8/4, P5)&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;(P8, P12/5)&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;(P8/2, P5)&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;(P8, P5/9)&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
Line 6,741: Line 6,698:
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;th&gt;16edo&lt;br /&gt;
         &lt;th&gt;17-edo&lt;br /&gt;
&lt;/th&gt;
&lt;/th&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;(P8, P5)&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;(P8, WWP5/11)&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;(P8, P11/4)&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;(P8, P11/3)&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;(P8/2, P4/7)&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
Line 6,761: Line 6,718:
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
     &lt;/tr&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;th&gt;17edo&lt;br /&gt;
         &lt;th&gt;18b-edo&lt;br /&gt;
&lt;/th&gt;
&lt;/th&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;(P8/6, P5)&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;(P8, P12/4)&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;(P8/2, P4/2)&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;(P8/3, P12/4)&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;(P8/2, P5)&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;(P8, P5/10)&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
Line 6,793: Line 6,742:
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;th&gt;18edo&lt;br /&gt;
         &lt;th&gt;19-edo&lt;br /&gt;
&lt;/th&gt;
&lt;/th&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;(P8, P5)&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;(P8, P12/10)&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;(P8, P4/2)&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;(P8, P12/6)&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;(P8, P12/5)&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;(P8, P11/3)&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;(P8, P4/8)&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
Line 6,819: Line 6,764:
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;th&gt;19edo&lt;br /&gt;
         &lt;th&gt;20-edo&lt;br /&gt;
&lt;/th&gt;
&lt;/th&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;(P8/4, P5)&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;(P8, WWP4/16)&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;(P8/2, P5/4)&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;(P8/5, P5)&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;(P8/4, P5/3)&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;(P8, P11/4)&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;(P8/2, P4/8)&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;(P8, P4/8)&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
Line 6,845: Line 6,786:
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;th&gt;&lt;br /&gt;
         &lt;th&gt;21-edo&lt;br /&gt;
&lt;/th&gt;
&lt;/th&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;(P8/3, P5)&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;(P8, W&lt;span style="vertical-align: super;"&gt;3&lt;/span&gt;P4/9)&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;(P8/7, P5)&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;(P8/3, P4/3)&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;(P8, P5/3)&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;(P8, P11/6)&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;(P8/3, P5/2)&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;(P8, P11/3)&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;(P8, P5/12)&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;th&gt;&lt;br /&gt;
         &lt;th&gt;22-edo&lt;br /&gt;
&lt;/th&gt;
&lt;/th&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;(P8/2, P5)&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;(P8, W&lt;span style="vertical-align: super;"&gt;3&lt;/span&gt;P4/15)&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;(P8/2, P4/3)&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;(P8, P4/3)&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;(P8/2, P12/5)&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;(P8, P5)&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;(P8/2, P12/7)&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;(P8, P12/5)&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;(P8/2, M2/4)&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;th&gt;&lt;br /&gt;
         &lt;th&gt;23-edo&lt;br /&gt;
&lt;/th&gt;
&lt;/th&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;(P8, P4/5)&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;(P8, WWP4/8)&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;(P8, P4/2)&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;(P8, P12/12)&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;(P8, P5)&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;(P8, P12/9)&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;(P8, P12/4)&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;(P8, P12/6)&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;(P8, W&lt;span style="vertical-align: super;"&gt;5&lt;/span&gt;P5/16)&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
     &lt;/tr&gt;
&lt;/td&gt;
     &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
         &lt;th&gt;24-edo&lt;br /&gt;
&lt;/td&gt;
     &lt;/tr&gt;
&lt;/table&gt;
 
&lt;br /&gt;
&lt;br /&gt;
&lt;em&gt;If the octave is split, alternate generators are found by adding periods, or by subtracting periods and inverting. One generator is chosen (bolded in the table) and stacked until it totals some voicing of the 4th or 5th of both edos, or if the octave is split, some appropriate imperfect multigen. Further stacking, or stacking an alternate generator, sometimes creates a 2nd pergen.&lt;/em&gt;&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
 
 
&lt;table class="wiki_table"&gt;
     &lt;tr&gt;
         &lt;th&gt;edos&lt;br /&gt;
&lt;/th&gt;
&lt;/th&gt;
        &lt;th&gt;octave split&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;(P8/12, P5)&lt;br /&gt;
&lt;/th&gt;
        &lt;th&gt;period&lt;br /&gt;
&lt;/th&gt;
        &lt;th&gt;generator(s)&lt;br /&gt;
&lt;/th&gt;
        &lt;th&gt;4th's keyspans&lt;br /&gt;
&lt;/th&gt;
        &lt;th&gt;5th's keyspans&lt;br /&gt;
&lt;/th&gt;
        &lt;th&gt;pergen&lt;br /&gt;
&lt;/th&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
         &lt;td style="text-align: center;"&gt;7 &amp;amp; 12&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;1&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;(P8, W&lt;span style="vertical-align: super;"&gt;6&lt;/span&gt;P4/14)&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;7\7 = 12\12&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;(P8/2, P4/2)&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;3\7 = 5\12&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;(P8/3, P4/2)&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;3\7 = 5\12&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;(P8/8, P5)&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;4\7 = 7\12&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;(P8, P5/2)&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;unsplit&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;(P8/6, P4/2)&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
    &lt;/tr&gt;
         &lt;td style="text-align: center;"&gt;(P8, P4/2)&lt;br /&gt;
    &lt;tr&gt;
         &lt;td style="text-align: center;"&gt;8 &amp;amp; 12&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;4&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;(P8/4, P4/2)&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;2\8 = 3\12&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;1\8 = 1\12, 1\8 = 2\12,&lt;br /&gt;
3\8 = 4\12, &lt;strong&gt;3\8 = 5\12&lt;/strong&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;3\8 = 5\12&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;5\8 = 7\12&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;quarter-8ve&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;9 &amp;amp; 12&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;3&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;3\9 = 4\12&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;1\9 = 1\12, 2\9 = 3\12, &lt;strong&gt;4\9 = 5\12&lt;/strong&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;5\9 = 7\12&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;third-8ve&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;10 &amp;amp; 12&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;2&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;5\10 = 6\12&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;1\10 = 1\12, &lt;strong&gt;4\10 = 5\12&lt;/strong&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;6\10 = 7\12&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;half-8ve&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;11 &amp;amp; 12&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;1&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;11\11 = 12\12&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;1\11 = 1\12&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;6\11 = 7\12&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;fifth-4th&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;12 &amp;amp; 13&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;1&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;12\12 = 13\13&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;1\12 = 1\13&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;7\12 = 8\13&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;fifth-4th&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;12 &amp;amp; 13b&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;1&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;12\12 = 13\13&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;1\12 = 1\13&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;7\12 = 7\13&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;seventh-5th&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;12 &amp;amp; 15&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;3&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;4\12 = 5\15&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;1\12 = 1\15, 3\12 = 4\15, &lt;strong&gt;5\12 = 6\15&lt;/strong&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;7\12 = 9\15&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;third-8ve&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;12 &amp;amp; 17&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;1&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;12\12 = 17\17&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;5\12 = 7\17&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;7\12 = 10\17&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;unsplit&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;15 &amp;amp; 17&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;1&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;15\15 = 17\17&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;7\15 = 8\17&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;9\15 = 10\17&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;third-11th&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;22 &amp;amp; 24&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;2&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;11\22 = 12\24&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;strong&gt;1\22 = 1\24&lt;/strong&gt;, 10\22 = 11\24&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;13\22 = 14\24&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;half-8ve quarter-tone&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 7,145: Line 6,893:
make a glossary of all bolded terms?&lt;br /&gt;
make a glossary of all bolded terms?&lt;br /&gt;
link from: ups and downs page, Kite Giedraitis page, MOS scale names page,&lt;br /&gt;
link from: ups and downs page, Kite Giedraitis page, MOS scale names page,&lt;br /&gt;
&lt;!-- ws:start:WikiTextUrlRule:8919:http://xenharmonic.wikispaces.com/Proposed+names+for+rank+2+temperaments --&gt;&lt;a href="http://xenharmonic.wikispaces.com/Proposed+names+for+rank+2+temperaments"&gt;http://xenharmonic.wikispaces.com/Proposed+names+for+rank+2+temperaments&lt;/a&gt;&lt;!-- ws:end:WikiTextUrlRule:8919 --&gt;&lt;br /&gt;
&lt;!-- ws:start:WikiTextUrlRule:8602:http://xenharmonic.wikispaces.com/Proposed+names+for+rank+2+temperaments --&gt;&lt;a href="http://xenharmonic.wikispaces.com/Proposed+names+for+rank+2+temperaments"&gt;http://xenharmonic.wikispaces.com/Proposed+names+for+rank+2+temperaments&lt;/a&gt;&lt;!-- ws:end:WikiTextUrlRule:8602 --&gt;&lt;br /&gt;
&lt;!-- ws:start:WikiTextUrlRule:8920:http://xenharmonic.wikispaces.com/Tour+of+Regular+Temperaments --&gt;&lt;a href="http://xenharmonic.wikispaces.com/Tour+of+Regular+Temperaments"&gt;http://xenharmonic.wikispaces.com/Tour+of+Regular+Temperaments&lt;/a&gt;&lt;!-- ws:end:WikiTextUrlRule:8920 --&gt;&lt;br /&gt;
&lt;!-- ws:start:WikiTextUrlRule:8603:http://xenharmonic.wikispaces.com/Tour+of+Regular+Temperaments --&gt;&lt;a href="http://xenharmonic.wikispaces.com/Tour+of+Regular+Temperaments"&gt;http://xenharmonic.wikispaces.com/Tour+of+Regular+Temperaments&lt;/a&gt;&lt;!-- ws:end:WikiTextUrlRule:8603 --&gt;&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:108:&amp;lt;h3&amp;gt; --&gt;&lt;h3 id="toc24"&gt;&lt;a name="Further Discussion-Supplemental materials*-Notaion guide PDF"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:108 --&gt;Notaion guide PDF&lt;/h3&gt;
&lt;!-- ws:start:WikiTextHeadingRule:108:&amp;lt;h3&amp;gt; --&gt;&lt;h3 id="toc24"&gt;&lt;a name="Further Discussion-Supplemental materials*-Notaion guide PDF"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:108 --&gt;Notaion guide PDF&lt;/h3&gt;
  &lt;br /&gt;
  &lt;br /&gt;
This PDF is a rank-2 notation guide that shows the full lattice for the first 15 pergens, up through the third-splits block. It includes alternate enharmonics for many pergens.&lt;br /&gt;
This PDF is a rank-2 notation guide that shows the full lattice for the first 15 pergens, up through the third-splits block. It includes alternate enharmonics for many pergens.&lt;br /&gt;
&lt;!-- ws:start:WikiTextUrlRule:8921:http://www.tallkite.com/misc_files/pergens.pdf --&gt;&lt;a class="wiki_link_ext" href="http://www.tallkite.com/misc_files/pergens.pdf" rel="nofollow"&gt;http://www.tallkite.com/misc_files/pergens.pdf&lt;/a&gt;&lt;!-- ws:end:WikiTextUrlRule:8921 --&gt;&lt;br /&gt;
&lt;!-- ws:start:WikiTextUrlRule:8604:http://www.tallkite.com/misc_files/pergens.pdf --&gt;&lt;a class="wiki_link_ext" href="http://www.tallkite.com/misc_files/pergens.pdf" rel="nofollow"&gt;http://www.tallkite.com/misc_files/pergens.pdf&lt;/a&gt;&lt;!-- ws:end:WikiTextUrlRule:8604 --&gt;&lt;br /&gt;
(screenshot)&lt;br /&gt;
(screenshot)&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
Line 7,157: Line 6,905:
  &lt;br /&gt;
  &lt;br /&gt;
Alt-pergenLister lists out thousands of pergens, and suggests periods, generators and enharmonics for each one. Alternate enharmonics are not listed, but single-pair notation for false-double pergens is. It can also list only those pergens supported by a specific edo. Written in Jesusonic, runs inside Reaper.&lt;br /&gt;
Alt-pergenLister lists out thousands of pergens, and suggests periods, generators and enharmonics for each one. Alternate enharmonics are not listed, but single-pair notation for false-double pergens is. It can also list only those pergens supported by a specific edo. Written in Jesusonic, runs inside Reaper.&lt;br /&gt;
&lt;!-- ws:start:WikiTextUrlRule:8922:http://www.tallkite.com/misc_files/alt-pergenLister.zip --&gt;&lt;a class="wiki_link_ext" href="http://www.tallkite.com/misc_files/alt-pergenLister.zip" rel="nofollow"&gt;http://www.tallkite.com/misc_files/alt-pergenLister.zip&lt;/a&gt;&lt;!-- ws:end:WikiTextUrlRule:8922 --&gt;&lt;br /&gt;
&lt;!-- ws:start:WikiTextUrlRule:8605:http://www.tallkite.com/misc_files/alt-pergenLister.zip --&gt;&lt;a class="wiki_link_ext" href="http://www.tallkite.com/misc_files/alt-pergenLister.zip" rel="nofollow"&gt;http://www.tallkite.com/misc_files/alt-pergenLister.zip&lt;/a&gt;&lt;!-- ws:end:WikiTextUrlRule:8605 --&gt;&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
The first section (PERGEN and Per/Gen cents) describes each pergen without regard to notational issues. The period and generator's cents are given, assuming a 5th of 700¢ + c. The generator is reduced, e.g. (P8/2, P5) has a generator of 100¢ + c, not 700¢ + c. The next two sections show a possible notation for P and G. The last section shows the unreduced pergen, and for false doubles, a possible single-pair notation. Red indicates problems. Generators of 50¢ or less are in red. Enharmonics of a 3rd or more are in red.&lt;br /&gt;
The first section (PERGEN and Per/Gen cents) describes each pergen without regard to notational issues. The period and generator's cents are given, assuming a 5th of 700¢ + c. The generator is reduced, e.g. (P8/2, P5) has a generator of 100¢ + c, not 700¢ + c. The next two sections show a possible notation for P and G. The last section shows the unreduced pergen, and for false doubles, a possible single-pair notation. Red indicates problems. Generators of 50¢ or less are in red. Enharmonics of a 3rd or more are in red.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
Screenshots of the first 38 pergens:&lt;br /&gt;
Screenshots of the first 38 pergens:&lt;br /&gt;
&lt;!-- ws:start:WikiTextLocalImageRule:5454:&amp;lt;img src=&amp;quot;/file/view/alt-pergenLister.png/624838213/704x460/alt-pergenLister.png&amp;quot; alt=&amp;quot;&amp;quot; title=&amp;quot;&amp;quot; style=&amp;quot;height: 460px; width: 704px;&amp;quot; /&amp;gt; --&gt;&lt;img src="/file/view/alt-pergenLister.png/624838213/704x460/alt-pergenLister.png" alt="alt-pergenLister.png" title="alt-pergenLister.png" style="height: 460px; width: 704px;" /&gt;&lt;!-- ws:end:WikiTextLocalImageRule:5454 --&gt;&lt;br /&gt;
&lt;!-- ws:start:WikiTextLocalImageRule:5234:&amp;lt;img src=&amp;quot;/file/view/alt-pergenLister.png/624838213/704x460/alt-pergenLister.png&amp;quot; alt=&amp;quot;&amp;quot; title=&amp;quot;&amp;quot; style=&amp;quot;height: 460px; width: 704px;&amp;quot; /&amp;gt; --&gt;&lt;img src="/file/view/alt-pergenLister.png/624838213/704x460/alt-pergenLister.png" alt="alt-pergenLister.png" title="alt-pergenLister.png" style="height: 460px; width: 704px;" /&gt;&lt;!-- ws:end:WikiTextLocalImageRule:5234 --&gt;&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
Listing all valid pergens is not a trivial task, like listing all valid edos or all valid MOS scales. Not all combinations of octave fractions and multigen fractions make a valid pergen. The search for rank-2 pergens can be done by looping through all possible square mappings [(x, y), (0, z)], and using the formula (P8/x, (i·z - y, x) / xz). While x is always positive and z is always nonzero, y can take on any value. For any x and z, y can be constrained to produce a reasonable cents value for 3/1. Let T be the tempered twefth 3/1. The mapping says T = y·P + z·G = y·P8/x + z·G. Thus y = x·(T/P8 - z·G/P8). We adopt the convention that G is less than half an octave. We constrain T so that the 5th is between 600¢ and 800¢, which certainly includes anything that sounds like a 5th. Thus T is between 3/2 and 5/3 of an octave. We assume that if the octave is stretched, the ranges of T and G will be stretched along with it. The outer ranges of y can now be computed, using the floor function to round down to the nearest integer, and the ceiling function to round up:&lt;br /&gt;
Listing all valid pergens is not a trivial task, like listing all valid edos or all valid MOS scales. Not all combinations of octave fractions and multigen fractions make a valid pergen. The search for rank-2 pergens can be done by looping through all possible square mappings [(x, y), (0, z)], and using the formula (P8/x, (i·z - y, x) / xz). While x is always positive and z is always nonzero, y can take on any value. For any x and z, y can be constrained to produce a reasonable cents value for 3/1. Let T be the tempered twefth 3/1. The mapping says T = y·P + z·G = y·P8/x + z·G. Thus y = x·(T/P8 - z·G/P8). We adopt the convention that G is less than half an octave. We constrain T so that the 5th is between 600¢ and 800¢, which certainly includes anything that sounds like a 5th. Thus T is between 3/2 and 5/3 of an octave. We assume that if the octave is stretched, the ranges of T and G will be stretched along with it. The outer ranges of y can now be computed, using the floor function to round down to the nearest integer, and the ceiling function to round up:&lt;br /&gt;