Kite's thoughts on pergens: Difference between revisions
Wikispaces>TallKite **Imported revision 630796453 - Original comment: ** |
Wikispaces>TallKite **Imported revision 630796511 - Original comment: ** |
||
Line 1: | Line 1: | ||
<h2>IMPORTED REVISION FROM WIKISPACES</h2> | <h2>IMPORTED REVISION FROM WIKISPACES</h2> | ||
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | ||
: This revision was by author [[User:TallKite|TallKite]] and made on <tt>2018-07-03 17: | : This revision was by author [[User:TallKite|TallKite]] and made on <tt>2018-07-03 17:38:56 UTC</tt>.<br> | ||
: The original revision id was <tt> | : The original revision id was <tt>630796511</tt>.<br> | ||
: The revision comment was: <tt></tt><br> | : The revision comment was: <tt></tt><br> | ||
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | ||
Line 941: | Line 941: | ||
__**Pergens Within An EDO**__ | __**Pergens Within An EDO**__ | ||
See the screenshots in the Supplemental Materials section for a complete list of which pergens are supported by 12, 15 and 19 edo. The list includes multiple pergens per period/generator combination. The next table shows only the simplest pergen for each combination. Combinations are excluded if the period and generator are not coprime, because the scale is contained in a smaller edo. Periods of 1 or 2 edosteps are excluded as too trivial, because every step of the edo appears in the genchains, even if the chains are only one step long. Generators of 1 edostep are excluded when the octave is unsplit, because a | See the screenshots in the Supplemental Materials section for a complete list of which pergens are supported by 12, 15 and 19 edo. The list includes multiple pergens per period/generator combination. The next table shows only the simplest pergen for each combination. Combinations are excluded if the period and generator are not coprime, because the scale is contained in a smaller edo. For example, 15edo has no unsplit pergen, because that is a 5edo scale. Periods of 1 or 2 edosteps are excluded as too trivial, because every step of the edo appears in the genchains, even if the chains are only one step long. Generators of 1 edostep are excluded for edos >= 12 when the octave is unsplit, because a solid run of edosteps isn't a very interesting scale. | ||
To find the pergen, | To find the pergen, find the edo, then find the row that corresponds to the period, then find the column that corresponds to the generator. | ||
||~ EDO ||~ | ||~ EDO ||~ Period ||||||||||||||||||~ Generator in edosteps ||~ ||~ ||~ ||~ ||~ ||~ || | ||
||~ ||~ ||~ 1 ||~ 2 ||~ 3 ||~ 4 ||~ 5 ||~ 6 ||~ 7 ||~ 8 ||~ 9 ||~ 10 ||~ 11 ||~ 12 ||~ 13 ||~ 14 ||~ 15 || | |||
|| | ||~ 5 ||~ P8 ||= P4/2 ||= P5 ||= ||= ||= ||= ||= ||= ||= ||= ||= ||= ||= ||= ||= || | ||
|| | ||~ 6 ||~ P8 ||= P4/2 ||= - ||= - ||= ||= ||= ||= ||= ||= ||= ||= ||= ||= ||= ||= || | ||
|| | ||~ " ||~ P8/2 ||= P5 ||= ||= ||= ||= ||= ||= ||= ||= ||= ||= ||= ||= ||= ||= || | ||
|| | ||~ 7 ||~ P8 ||= P4/3 ||= P5/2 ||= P5 ||= ||= ||= ||= ||= ||= ||= ||= ||= ||= ||= ||= || | ||
|| | ||~ 8 ||~ P8 ||= P4/3 ||= - ||= P5 ||= ||= ||= ||= ||= ||= ||= ||= ||= ||= ||= ||= || | ||
|| | ||~ " ||~ P8/2 ||= P5 ||= - ||= ||= ||= ||= ||= ||= ||= ||= ||= ||= ||= ||= ||= || | ||
|| | ||~ 9 ||~ P8 ||= P4/4 ||= P4/2 ||= - ||= P5 ||= ||= ||= ||= ||= ||= ||= ||= ||= ||= ||= || | ||
|| | ||~ " ||~ P8/3 ||= P5 ||= ||= ||= ||= ||= ||= ||= ||= ||= ||= ||= ||= ||= ||= || | ||
|| | ||~ 10 ||~ P8 ||= P4/4 ||= - ||= P5/2 ||= P5 ||= ||= ||= ||= ||= ||= ||= ||= ||= ||= ||= || | ||
|| | ||~ " ||~ P8/2 ||= P5 ||= P4/2 ||= ||= ||= ||= ||= ||= ||= ||= ||= ||= ||= ||= ||= || | ||
|| | ||~ 11 ||~ P8 ||= P4/5 ||= P5/3 ||= P5/2 ||= P11/4 ||= P5 ||= ||= ||= ||= ||= ||= ||= ||= ||= ||= || | ||
|| | ||~ 12 ||~ P8 ||= P4/5 ||= - ||= - ||= - ||= P5 ||= ||= ||= ||= ||= ||= ||= ||= ||= ||= || | ||
|| | ||~ " ||~ P8/2 ||= P5 ||= - ||= ||= ||= ||= ||= ||= ||= ||= ||= ||= ||= ||= ||= || | ||
|| | ||~ " ||~ P8/3 ||= ||= ||= ||= ||= ||= ||= ||= ||= ||= ||= ||= ||= ||= ||= || | ||
|| | ||~ " ||~ P8/4 ||= ||= ||= ||= ||= ||= ||= ||= ||= ||= ||= ||= ||= ||= ||= || | ||
|| | ||~ 13 ||~ ||= ||= ||= ||= ||= ||= ||= ||= ||= ||= ||= ||= ||= ||= ||= || | ||
|| | ||~ 13b ||~ ||= ||= ||= ||= ||= ||= ||= ||= ||= ||= ||= ||= ||= ||= ||= || | ||
|| | ||~ ||~ ||= ||= ||= ||= ||= ||= ||= ||= ||= ||= ||= ||= ||= ||= ||= || | ||
|| | ||~ ||~ ||= ||= ||= ||= ||= ||= ||= ||= ||= ||= ||= ||= ||= ||= ||= || | ||
|| | ||~ ||~ ||= ||= ||= ||= ||= ||= ||= ||= ||= ||= ||= ||= ||= ||= ||= || | ||
|| | ||~ ||~ ||= ||= ||= ||= ||= ||= ||= ||= ||= ||= ||= ||= ||= ||= ||= || | ||
|| | ||~ ||~ ||= ||= ||= ||= ||= ||= ||= ||= ||= ||= ||= ||= ||= ||= ||= || | ||
|| | ||~ ||~ ||= ||= ||= ||= ||= ||= ||= ||= ||= ||= ||= ||= ||= ||= ||= || | ||
|| | ||~ ||~ ||= ||= ||= ||= ||= ||= ||= ||= ||= ||= ||= ||= ||= ||= ||= || | ||
|| | ||~ ||~ ||= ||= ||= ||= ||= ||= ||= ||= ||= ||= ||= ||= ||= ||= ||= || | ||
|| | ||~ ||~ ||= ||= ||= ||= ||= ||= ||= ||= ||= ||= ||= ||= ||= ||= ||= || | ||
|| | ||~ ||~ ||= ||= ||= ||= ||= ||= ||= ||= ||= ||= ||= ||= ||= ||= ||= || | ||
|| | ||~ ||~ ||= ||= ||= ||= ||= ||= ||= ||= ||= ||= ||= ||= ||= ||= ||= || | ||
|| | ||~ ||~ ||= ||= ||= ||= ||= ||= ||= ||= ||= ||= ||= ||= ||= ||= ||= || | ||
Line 3,091: | Line 3,091: | ||
<br /> | <br /> | ||
<u><span style="font-size: 110%;">Mizarian Porcupine Overture by Herman Miller (P8, P4/3)</span></u><br /> | <u><span style="font-size: 110%;">Mizarian Porcupine Overture by Herman Miller (P8, P4/3)</span></u><br /> | ||
<!-- ws:start:WikiTextLocalImageRule: | <!-- ws:start:WikiTextLocalImageRule:6233:&lt;img src=&quot;/file/view/Mizarian%20Porcupine%20Overture.png/628798699/800x692/Mizarian%20Porcupine%20Overture.png&quot; alt=&quot;&quot; title=&quot;&quot; style=&quot;height: 692px; width: 800px;&quot; /&gt; --><img src="/file/view/Mizarian%20Porcupine%20Overture.png/628798699/800x692/Mizarian%20Porcupine%20Overture.png" alt="Mizarian Porcupine Overture.png" title="Mizarian Porcupine Overture.png" style="height: 692px; width: 800px;" /><!-- ws:end:WikiTextLocalImageRule:6233 --><br /> | ||
<br /> | <br /> | ||
<br /> | <br /> | ||
Line 4,615: | Line 4,615: | ||
<br /> | <br /> | ||
Pergen squares can be generalized to any prime subgroup by representing the notes as dots. Below are the first 32 rank-2 pergens in a completely JI-agnostic format. A is the interval of equivalence, the period of the unsplit pergen. B is the generator of the unsplit pergen. For 2.3 pergens, A = 8ve and B = 5th. The (A, (A-B)/2) square corresponds to (P8, P4/2). In the 2.5 subgroup, B = 5/4. In Bohlen-Peirce, A = 3/1 and B = 5/3. True doubles are in red. The true/false property of a pergen is independent of the prime subgroup. Imperfect multigens are in green. Imperfect is generalized to other subgroups as requiring multiples of B in the pergen.<br /> | Pergen squares can be generalized to any prime subgroup by representing the notes as dots. Below are the first 32 rank-2 pergens in a completely JI-agnostic format. A is the interval of equivalence, the period of the unsplit pergen. B is the generator of the unsplit pergen. For 2.3 pergens, A = 8ve and B = 5th. The (A, (A-B)/2) square corresponds to (P8, P4/2). In the 2.5 subgroup, B = 5/4. In Bohlen-Peirce, A = 3/1 and B = 5/3. True doubles are in red. The true/false property of a pergen is independent of the prime subgroup. Imperfect multigens are in green. Imperfect is generalized to other subgroups as requiring multiples of B in the pergen.<br /> | ||
<!-- ws:start:WikiTextLocalImageRule: | <!-- ws:start:WikiTextLocalImageRule:6234:&lt;img src=&quot;/file/view/pergen%20squares.png/627986281/pergen%20squares.png&quot; alt=&quot;&quot; title=&quot;&quot; /&gt; --><img src="/file/view/pergen%20squares.png/627986281/pergen%20squares.png" alt="pergen squares.png" title="pergen squares.png" /><!-- ws:end:WikiTextLocalImageRule:6234 --><br /> | ||
A similar chart could be made for all rank-3 pergens, using pergen cubes.<br /> | A similar chart could be made for all rank-3 pergens, using pergen cubes.<br /> | ||
<br /> | <br /> | ||
Line 6,380: | Line 6,380: | ||
<u><strong>Pergens Within An EDO</strong></u><br /> | <u><strong>Pergens Within An EDO</strong></u><br /> | ||
<br /> | <br /> | ||
See the screenshots in the Supplemental Materials section for a complete list of which pergens are supported by 12, 15 and 19 edo. The list includes multiple pergens per period/generator combination. The next table shows only the simplest pergen for each combination. Combinations are excluded if the period and generator are not coprime, because the scale is contained in a smaller edo. Periods of 1 or 2 edosteps are excluded as too trivial, because every step of the edo appears in the genchains, even if the chains are only one step long. Generators of 1 edostep are excluded when the octave is unsplit, because a | See the screenshots in the Supplemental Materials section for a complete list of which pergens are supported by 12, 15 and 19 edo. The list includes multiple pergens per period/generator combination. The next table shows only the simplest pergen for each combination. Combinations are excluded if the period and generator are not coprime, because the scale is contained in a smaller edo. For example, 15edo has no unsplit pergen, because that is a 5edo scale. Periods of 1 or 2 edosteps are excluded as too trivial, because every step of the edo appears in the genchains, even if the chains are only one step long. Generators of 1 edostep are excluded for edos &gt;= 12 when the octave is unsplit, because a solid run of edosteps isn't a very interesting scale.<br /> | ||
<br /> | <br /> | ||
To find the pergen, | To find the pergen, find the edo, then find the row that corresponds to the period, then find the column that corresponds to the generator.<br /> | ||
<br /> | <br /> | ||
Line 6,390: | Line 6,390: | ||
<th>EDO<br /> | <th>EDO<br /> | ||
</th> | </th> | ||
<th> | <th>Period<br /> | ||
</th> | </th> | ||
<th colspan="9">Generator in edosteps<br /> | |||
<th colspan=" | |||
</th> | </th> | ||
<th><br /> | <th><br /> | ||
Line 6,418: | Line 6,408: | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
<th><br /> | <th><br /> | ||
</th> | </th> | ||
Line 6,456: | Line 6,444: | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
< | <th>5<br /> | ||
</ | </th> | ||
< | <th>P8<br /> | ||
</th> | |||
</ | |||
<td style="text-align: center;">P4/2<br /> | <td style="text-align: center;">P4/2<br /> | ||
</td> | </td> | ||
Line 6,494: | Line 6,480: | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
< | <th>6<br /> | ||
</ | </th> | ||
< | <th>P8<br /> | ||
</th> | |||
</ | |||
<td style="text-align: center;">P4/2<br /> | <td style="text-align: center;">P4/2<br /> | ||
</td> | </td> | ||
Line 6,532: | Line 6,516: | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
< | <th>&quot;<br /> | ||
</th> | |||
<th>P8/2<br /> | |||
</ | </th> | ||
< | |||
</ | |||
<td style="text-align: center;">P5<br /> | <td style="text-align: center;">P5<br /> | ||
</td> | </td> | ||
Line 6,570: | Line 6,552: | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
< | <th>7<br /> | ||
</ | </th> | ||
<th>P8<br /> | |||
</th> | |||
< | <td style="text-align: center;">P4/3<br /> | ||
</ | |||
<td style="text-align: center;">P4/ | |||
</td> | </td> | ||
<td style="text-align: center;">P5/2<br /> | <td style="text-align: center;">P5/2<br /> | ||
Line 6,608: | Line 6,588: | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
<td style="text-align: center;"> | <th>8<br /> | ||
</th> | |||
<th>P8<br /> | |||
</th> | |||
<td style="text-align: center;">P4/3<br /> | |||
</td> | </td> | ||
<td style="text-align: center;"> | <td style="text-align: center;">-<br /> | ||
</td> | </td> | ||
<td style="text-align: center;"> | <td style="text-align: center;">P5<br /> | ||
</td> | </td> | ||
<td style="text-align: center;"><br /> | <td style="text-align: center;"><br /> | ||
Line 6,618: | Line 6,602: | ||
<td style="text-align: center;"><br /> | <td style="text-align: center;"><br /> | ||
</td> | </td> | ||
<td style="text-align: center;"><br /> | |||
<td style="text-align: center;"><br /> | |||
</td> | </td> | ||
<td style="text-align: center;"><br /> | <td style="text-align: center;"><br /> | ||
Line 6,646: | Line 6,624: | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
<td style="text-align: center;"><br /> | <th>&quot;<br /> | ||
</th> | |||
<th>P8/2<br /> | |||
</th> | |||
<td style="text-align: center;">P5<br /> | |||
</td> | </td> | ||
<td style="text-align: center;"> | <td style="text-align: center;">-<br /> | ||
</td> | </td> | ||
<td style="text-align: center;"><br /> | <td style="text-align: center;"><br /> | ||
Line 6,684: | Line 6,660: | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
<td style="text-align: center;"> | <th>9<br /> | ||
</th> | |||
<th>P8<br /> | |||
</th> | |||
<td style="text-align: center;">P4/4<br /> | |||
</td> | </td> | ||
<td style="text-align: center;"> | <td style="text-align: center;">P4/2<br /> | ||
</td> | </td> | ||
<td style="text-align: center;"> | <td style="text-align: center;">-<br /> | ||
</td> | </td> | ||
<td style="text-align: center;"> | <td style="text-align: center;">P5<br /> | ||
</td> | </td> | ||
<td style="text-align: center;"><br /> | <td style="text-align: center;"><br /> | ||
Line 6,722: | Line 6,696: | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
< | <th>&quot;<br /> | ||
</th> | |||
<th>P8/3<br /> | |||
</ | </th> | ||
< | <td style="text-align: center;">P5<br /> | ||
</ | |||
<td style="text-align: center;"><br /> | |||
</td> | </td> | ||
<td style="text-align: center;"><br /> | <td style="text-align: center;"><br /> | ||
Line 6,760: | Line 6,732: | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
<td style="text-align: center;"> | <th>10<br /> | ||
</th> | |||
<th>P8<br /> | |||
</th> | |||
<td style="text-align: center;">P4/4<br /> | |||
</td> | </td> | ||
<td style="text-align: center;"> | <td style="text-align: center;">-<br /> | ||
</td> | </td> | ||
<td style="text-align: center;"> | <td style="text-align: center;">P5/2<br /> | ||
</td> | </td> | ||
<td style="text-align: center;"><br /> | <td style="text-align: center;">P5<br /> | ||
</td> | </td> | ||
<td style="text-align: center;"><br /> | <td style="text-align: center;"><br /> | ||
Line 6,790: | Line 6,766: | ||
<td style="text-align: center;"><br /> | <td style="text-align: center;"><br /> | ||
</td> | </td> | ||
</tr> | |||
</tr> | |||
<tr> | <tr> | ||
<td style="text-align: center;"><br /> | <th>&quot;<br /> | ||
</th> | |||
<th>P8/2<br /> | |||
</th> | |||
<td style="text-align: center;">P5<br /> | |||
</td> | </td> | ||
<td style="text-align: center;"> | <td style="text-align: center;">P4/2<br /> | ||
</td> | </td> | ||
<td style="text-align: center;"><br /> | <td style="text-align: center;"><br /> | ||
Line 6,836: | Line 6,804: | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
<td style="text-align: center;"> | <th>11<br /> | ||
</th> | |||
<th>P8<br /> | |||
</th> | |||
<td style="text-align: center;">P4/5<br /> | |||
</td> | </td> | ||
<td style="text-align: center;"> | <td style="text-align: center;">P5/3<br /> | ||
</td> | </td> | ||
<td style="text-align: center;"> | <td style="text-align: center;">P5/2<br /> | ||
</td> | </td> | ||
<td style="text-align: center;"><br /> | <td style="text-align: center;">P11/4<br /> | ||
</td> | </td> | ||
<td style="text-align: center;"> | <td style="text-align: center;">P5<br /> | ||
</td> | </td> | ||
<td style="text-align: center;"><br /> | <td style="text-align: center;"><br /> | ||
Line 6,874: | Line 6,840: | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
< | <th>12<br /> | ||
</ | </th> | ||
< | <th>P8<br /> | ||
</th> | |||
</ | |||
<td style="text-align: center;">P4/5<br /> | <td style="text-align: center;">P4/5<br /> | ||
</td> | </td> | ||
Line 6,912: | Line 6,876: | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
< | <th>&quot;<br /> | ||
</th> | |||
<th>P8/2<br /> | |||
</ | </th> | ||
< | |||
</ | |||
<td style="text-align: center;">P5<br /> | <td style="text-align: center;">P5<br /> | ||
</td> | </td> | ||
<td style="text-align: center;"> | <td style="text-align: center;">-<br /> | ||
</td> | </td> | ||
<td style="text-align: center;"><br /> | <td style="text-align: center;"><br /> | ||
Line 6,950: | Line 6,912: | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
<th>&quot;<br /> | |||
</th> | |||
<th>P8/3<br /> | |||
</th> | |||
<td style="text-align: center;"><br /> | <td style="text-align: center;"><br /> | ||
</td> | </td> | ||
<td style="text-align: center;"><br /> | <td style="text-align: center;"><br /> | ||
</td> | </td> | ||
<td style="text-align: center;"><br /> | <td style="text-align: center;"><br /> | ||
Line 6,982: | Line 6,946: | ||
<td style="text-align: center;"><br /> | <td style="text-align: center;"><br /> | ||
</td> | </td> | ||
</tr> | |||
</tr> | |||
<tr> | <tr> | ||
< | <th>&quot;<br /> | ||
</th> | |||
<th>P8/4<br /> | |||
</ | </th> | ||
< | |||
</ | |||
<td style="text-align: center;"><br /> | <td style="text-align: center;"><br /> | ||
</td> | </td> | ||
Line 7,026: | Line 6,984: | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
<th>13<br /> | |||
</th> | |||
<th><br /> | |||
</th> | |||
<td style="text-align: center;"><br /> | <td style="text-align: center;"><br /> | ||
</td> | </td> | ||
Line 7,056: | Line 7,018: | ||
<td style="text-align: center;"><br /> | <td style="text-align: center;"><br /> | ||
</td> | </td> | ||
</tr> | |||
<tr> | |||
<th>13b<br /> | |||
</th> | |||
<th><br /> | |||
</th> | |||
<td style="text-align: center;"><br /> | <td style="text-align: center;"><br /> | ||
</td> | </td> | ||
Line 7,062: | Line 7,030: | ||
<td style="text-align: center;"><br /> | <td style="text-align: center;"><br /> | ||
</td> | </td> | ||
<td style="text-align: center;"><br /> | <td style="text-align: center;"><br /> | ||
</td> | </td> | ||
Line 7,088: | Line 7,054: | ||
<td style="text-align: center;"><br /> | <td style="text-align: center;"><br /> | ||
</td> | </td> | ||
</tr> | |||
<tr> | |||
<th><br /> | |||
</th> | |||
<th><br /> | |||
</th> | |||
<td style="text-align: center;"><br /> | <td style="text-align: center;"><br /> | ||
</td> | </td> | ||
Line 7,100: | Line 7,072: | ||
<td style="text-align: center;"><br /> | <td style="text-align: center;"><br /> | ||
</td> | </td> | ||
<td style="text-align: center;"><br /> | <td style="text-align: center;"><br /> | ||
</td> | </td> | ||
Line 7,120: | Line 7,090: | ||
<td style="text-align: center;"><br /> | <td style="text-align: center;"><br /> | ||
</td> | </td> | ||
</tr> | |||
<tr> | |||
<th><br /> | |||
</th> | |||
<th><br /> | |||
</th> | |||
<td style="text-align: center;"><br /> | <td style="text-align: center;"><br /> | ||
</td> | </td> | ||
Line 7,138: | Line 7,114: | ||
<td style="text-align: center;"><br /> | <td style="text-align: center;"><br /> | ||
</td> | </td> | ||
<td style="text-align: center;"><br /> | <td style="text-align: center;"><br /> | ||
</td> | </td> | ||
Line 7,152: | Line 7,126: | ||
<td style="text-align: center;"><br /> | <td style="text-align: center;"><br /> | ||
</td> | </td> | ||
</tr> | |||
<tr> | |||
<th><br /> | |||
</th> | |||
<th><br /> | |||
</th> | |||
<td style="text-align: center;"><br /> | <td style="text-align: center;"><br /> | ||
</td> | </td> | ||
Line 7,176: | Line 7,156: | ||
<td style="text-align: center;"><br /> | <td style="text-align: center;"><br /> | ||
</td> | </td> | ||
<td style="text-align: center;"><br /> | <td style="text-align: center;"><br /> | ||
</td> | </td> | ||
Line 7,184: | Line 7,162: | ||
<td style="text-align: center;"><br /> | <td style="text-align: center;"><br /> | ||
</td> | </td> | ||
</tr> | |||
<tr> | |||
<th><br /> | |||
</th> | |||
<th><br /> | |||
</th> | |||
<td style="text-align: center;"><br /> | <td style="text-align: center;"><br /> | ||
</td> | </td> | ||
Line 7,216: | Line 7,200: | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
< | <th><br /> | ||
</ | </th> | ||
< | <th><br /> | ||
</th> | |||
</ | |||
<td style="text-align: center;"><br /> | <td style="text-align: center;"><br /> | ||
</td> | </td> | ||
Line 7,254: | Line 7,236: | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
< | <th><br /> | ||
</ | </th> | ||
< | <th><br /> | ||
</th> | |||
</ | |||
<td style="text-align: center;"><br /> | <td style="text-align: center;"><br /> | ||
</td> | </td> | ||
Line 7,292: | Line 7,272: | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
< | <th><br /> | ||
</ | </th> | ||
< | <th><br /> | ||
</th> | |||
</ | |||
<td style="text-align: center;"><br /> | <td style="text-align: center;"><br /> | ||
</td> | </td> | ||
Line 7,330: | Line 7,308: | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
< | <th><br /> | ||
</ | </th> | ||
< | <th><br /> | ||
</th> | |||
</ | |||
<td style="text-align: center;"><br /> | <td style="text-align: center;"><br /> | ||
</td> | </td> | ||
Line 7,368: | Line 7,344: | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
< | <th><br /> | ||
</ | </th> | ||
< | <th><br /> | ||
</th> | |||
</ | |||
<td style="text-align: center;"><br /> | <td style="text-align: center;"><br /> | ||
</td> | </td> | ||
Line 7,406: | Line 7,380: | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
< | <th><br /> | ||
</ | </th> | ||
< | <th><br /> | ||
</th> | |||
</ | |||
<td style="text-align: center;"><br /> | <td style="text-align: center;"><br /> | ||
</td> | </td> | ||
Line 7,444: | Line 7,416: | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
< | <th><br /> | ||
</ | </th> | ||
< | <th><br /> | ||
</th> | |||
</ | |||
<td style="text-align: center;"><br /> | <td style="text-align: center;"><br /> | ||
</td> | </td> | ||
Line 7,482: | Line 7,452: | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
< | <th><br /> | ||
</th> | |||
<th><br /> | |||
</th> | |||
</ | |||
< | |||
</ | |||
<td style="text-align: center;"><br /> | <td style="text-align: center;"><br /> | ||
</td> | </td> | ||
Line 8,069: | Line 7,999: | ||
<br /> | <br /> | ||
Screenshots of the first 2 pages:<br /> | Screenshots of the first 2 pages:<br /> | ||
<!-- ws:start:WikiTextLocalImageRule: | <!-- ws:start:WikiTextLocalImageRule:6235:&lt;img src=&quot;/file/view/pergens%201.png/627986243/704x948/pergens%201.png&quot; alt=&quot;&quot; title=&quot;&quot; style=&quot;height: 948px; width: 704px;&quot; /&gt; --><img src="/file/view/pergens%201.png/627986243/704x948/pergens%201.png" alt="pergens 1.png" title="pergens 1.png" style="height: 948px; width: 704px;" /><!-- ws:end:WikiTextLocalImageRule:6235 --><br /> | ||
<br /> | <br /> | ||
<!-- ws:start:WikiTextLocalImageRule: | <!-- ws:start:WikiTextLocalImageRule:6236:&lt;img src=&quot;/file/view/pergens%202.png/627986267/704x760/pergens%202.png&quot; alt=&quot;&quot; title=&quot;&quot; style=&quot;height: 760px; width: 704px;&quot; /&gt; --><img src="/file/view/pergens%202.png/627986267/704x760/pergens%202.png" alt="pergens 2.png" title="pergens 2.png" style="height: 760px; width: 704px;" /><!-- ws:end:WikiTextLocalImageRule:6236 --><br /> | ||
<!-- ws:start:WikiTextHeadingRule:115:&lt;h3&gt; --><h3 id="toc26"><!-- ws:end:WikiTextHeadingRule:115 --> </h3> | <!-- ws:start:WikiTextHeadingRule:115:&lt;h3&gt; --><h3 id="toc26"><!-- ws:end:WikiTextHeadingRule:115 --> </h3> | ||
<!-- ws:start:WikiTextHeadingRule:117:&lt;h3&gt; --><h3 id="toc27"><a name="Further Discussion-Supplemental materials-alt-pergenLister"></a><!-- ws:end:WikiTextHeadingRule:117 -->alt-pergenLister</h3> | <!-- ws:start:WikiTextHeadingRule:117:&lt;h3&gt; --><h3 id="toc27"><a name="Further Discussion-Supplemental materials-alt-pergenLister"></a><!-- ws:end:WikiTextHeadingRule:117 -->alt-pergenLister</h3> | ||
<br /> | <br /> | ||
Alt-pergenLister lists out thousands of rank-2 pergens, and suggests periods, generators and enharmonics for each one. Alternate enharmonics are not listed, but single-pair notation for false-double pergens is. It can also list only those pergens supported by a specific edo or edo pair. Written in Jesusonic, runs inside Reaper.<br /> | Alt-pergenLister lists out thousands of rank-2 pergens, and suggests periods, generators and enharmonics for each one. Alternate enharmonics are not listed, but single-pair notation for false-double pergens is. It can also list only those pergens supported by a specific edo or edo pair. Written in Jesusonic, runs inside Reaper.<br /> | ||
<!-- ws:start:WikiTextUrlRule: | <!-- ws:start:WikiTextUrlRule:10136:http://www.tallkite.com/misc_files/alt-pergenLister.zip --><a class="wiki_link_ext" href="http://www.tallkite.com/misc_files/alt-pergenLister.zip" rel="nofollow">http://www.tallkite.com/misc_files/alt-pergenLister.zip</a><!-- ws:end:WikiTextUrlRule:10136 --><br /> | ||
<br /> | <br /> | ||
The first section (PERGEN and Per/Gen cents) describes each pergen without regard to notational issues. The period and generator's cents are given, assuming a 5th of 700¢ + c. The generator is reduced, e.g. (P8/2, P5) has a generator of 100¢ + c, not 700¢ + c. The next two sections show a possible notation for P and G. The last section shows the unreduced pergen, and for false doubles, a possible single-pair notation. Horizontal lines group the pergens into blocks (half-splits, third-splits, etc). Red indicates problems. Generators of 50¢ or less are in red. Enharmonics of a 3rd or more are in red.<br /> | The first section (PERGEN and Per/Gen cents) describes each pergen without regard to notational issues. The period and generator's cents are given, assuming a 5th of 700¢ + c. The generator is reduced, e.g. (P8/2, P5) has a generator of 100¢ + c, not 700¢ + c. The next two sections show a possible notation for P and G. The last section shows the unreduced pergen, and for false doubles, a possible single-pair notation. Horizontal lines group the pergens into blocks (half-splits, third-splits, etc). Red indicates problems. Generators of 50¢ or less are in red. Enharmonics of a 3rd or more are in red.<br /> | ||
<br /> | <br /> | ||
Screenshots of the first 69 pergens:<br /> | Screenshots of the first 69 pergens:<br /> | ||
<!-- ws:start:WikiTextLocalImageRule: | <!-- ws:start:WikiTextLocalImageRule:6237:&lt;img src=&quot;/file/view/alt-pergenLister%201.png/627986177/800x427/alt-pergenLister%201.png&quot; alt=&quot;&quot; title=&quot;&quot; style=&quot;height: 427px; width: 800px;&quot; /&gt; --><img src="/file/view/alt-pergenLister%201.png/627986177/800x427/alt-pergenLister%201.png" alt="alt-pergenLister 1.png" title="alt-pergenLister 1.png" style="height: 427px; width: 800px;" /><!-- ws:end:WikiTextLocalImageRule:6237 --><br /> | ||
<!-- ws:start:WikiTextLocalImageRule: | <!-- ws:start:WikiTextLocalImageRule:6238:&lt;img src=&quot;http://xenharmonic.wikispaces.com/file/view/alt-pergenLister%202.png/627986179/800x455/alt-pergenLister%202.png&quot; alt=&quot;&quot; title=&quot;&quot; style=&quot;height: 455px; width: 800px;&quot; /&gt; --><img src="http://xenharmonic.wikispaces.com/file/view/alt-pergenLister%202.png/627986179/800x455/alt-pergenLister%202.png" alt="alt-pergenLister 2.png" title="alt-pergenLister 2.png" style="height: 455px; width: 800px;" /><!-- ws:end:WikiTextLocalImageRule:6238 --><br /> | ||
The first 29 pergens supported by 12edo:<br /> | The first 29 pergens supported by 12edo:<br /> | ||
<!-- ws:start:WikiTextLocalImageRule: | <!-- ws:start:WikiTextLocalImageRule:6239:&lt;img src=&quot;/file/view/alt-pergenLister%2012edo.png/627986189/800x449/alt-pergenLister%2012edo.png&quot; alt=&quot;&quot; title=&quot;&quot; style=&quot;height: 449px; width: 800px;&quot; /&gt; --><img src="/file/view/alt-pergenLister%2012edo.png/627986189/800x449/alt-pergenLister%2012edo.png" alt="alt-pergenLister 12edo.png" title="alt-pergenLister 12edo.png" style="height: 449px; width: 800px;" /><!-- ws:end:WikiTextLocalImageRule:6239 --><br /> | ||
Some of the pergens supported by 15edo. A red asterisk means partial support.<br /> | Some of the pergens supported by 15edo. A red asterisk means partial support.<br /> | ||
<!-- ws:start:WikiTextLocalImageRule: | <!-- ws:start:WikiTextLocalImageRule:6240:&lt;img src=&quot;/file/view/alt-pergenLister%2015edo.png/627986197/800x493/alt-pergenLister%2015edo.png&quot; alt=&quot;&quot; title=&quot;&quot; style=&quot;height: 493px; width: 800px;&quot; /&gt; --><img src="/file/view/alt-pergenLister%2015edo.png/627986197/800x493/alt-pergenLister%2015edo.png" alt="alt-pergenLister 15edo.png" title="alt-pergenLister 15edo.png" style="height: 493px; width: 800px;" /><!-- ws:end:WikiTextLocalImageRule:6240 --><br /> | ||
Pergens supported by 19edo. Edos that are a prime number support only 1 pergen per block.<br /> | Pergens supported by 19edo. Edos that are a prime number support only 1 pergen per block.<br /> | ||
<!-- ws:start:WikiTextLocalImageRule: | <!-- ws:start:WikiTextLocalImageRule:6241:&lt;img src=&quot;/file/view/alt-pergenLister%2019edo.png/627986203/800x459/alt-pergenLister%2019edo.png&quot; alt=&quot;&quot; title=&quot;&quot; style=&quot;height: 459px; width: 800px;&quot; /&gt; --><img src="/file/view/alt-pergenLister%2019edo.png/627986203/800x459/alt-pergenLister%2019edo.png" alt="alt-pergenLister 19edo.png" title="alt-pergenLister 19edo.png" style="height: 459px; width: 800px;" /><!-- ws:end:WikiTextLocalImageRule:6241 --><br /> | ||
<br /> | <br /> | ||
Listing all valid pergens is not a trivial task, like listing all valid edos or all valid MOS scales. Not all combinations of octave fractions and multigen fractions make a valid pergen. The search for rank-2 pergens can be done by looping through all possible square mappings [(x, y), (0, z)], and using the formula (P8/x, (i·z - y, x) / xz). While x is always positive and z is always nonzero, y can take on any value. For any x and z, y can be constrained to produce a reasonable cents value for 3/1. Let T be the tempered twefth 3/1. The mapping says T = y·P + z·G = y·P8/x + z·G. Thus y = x·(T/P8 - z·G/P8). We adopt the convention that G is less than half an octave. We constrain T so that the 5th is between 600¢ and 800¢, which certainly includes anything that sounds like a 5th. Thus T is between 3/2 and 5/3 of an octave. We assume that if the octave is stretched, the ranges of T and G will be stretched along with it. The outer ranges of y can now be computed, using the floor function to round down to the nearest integer, and the ceiling function to round up:<br /> | Listing all valid pergens is not a trivial task, like listing all valid edos or all valid MOS scales. Not all combinations of octave fractions and multigen fractions make a valid pergen. The search for rank-2 pergens can be done by looping through all possible square mappings [(x, y), (0, z)], and using the formula (P8/x, (i·z - y, x) / xz). While x is always positive and z is always nonzero, y can take on any value. For any x and z, y can be constrained to produce a reasonable cents value for 3/1. Let T be the tempered twefth 3/1. The mapping says T = y·P + z·G = y·P8/x + z·G. Thus y = x·(T/P8 - z·G/P8). We adopt the convention that G is less than half an octave. We constrain T so that the 5th is between 600¢ and 800¢, which certainly includes anything that sounds like a 5th. Thus T is between 3/2 and 5/3 of an octave. We assume that if the octave is stretched, the ranges of T and G will be stretched along with it. The outer ranges of y can now be computed, using the floor function to round down to the nearest integer, and the ceiling function to round up:<br /> |