Patent val: Difference between revisions
Wikispaces>keenanpepper **Imported revision 250708506 - Original comment: ** |
Wikispaces>jdfreivald **Imported revision 251253748 - Original comment: ** |
||
Line 1: | Line 1: | ||
<h2>IMPORTED REVISION FROM WIKISPACES</h2> | <h2>IMPORTED REVISION FROM WIKISPACES</h2> | ||
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | ||
: This revision was by author [[User: | : This revision was by author [[User:jdfreivald|jdfreivald]] and made on <tt>2011-09-06 14:02:09 UTC</tt>.<br> | ||
: The original revision id was <tt> | : The original revision id was <tt>251253748</tt>.<br> | ||
: The revision comment was: <tt></tt><br> | : The revision comment was: <tt></tt><br> | ||
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | ||
Line 49: | Line 49: | ||
A val defines a rank 1 temperament by defining the deliberate introduction of an error into one or more primes. In 12 EDO, for instance, the perfect fifth (ratio 3/2, or exactly 1.5) is mapped to 700 cents, which is actually just barely flat: a ratio of 2^(700/1200), or 1.4983070769. | A val defines a rank 1 temperament by defining the deliberate introduction of an error into one or more primes. In 12 EDO, for instance, the perfect fifth (ratio 3/2, or exactly 1.5) is mapped to 700 cents, which is actually just barely flat: a ratio of 2^(700/1200), or 1.4983070769. | ||
As stated above, the 2/1 in the patent val is perfect. The patent val for 12 EDO, <12 19 28 34 42 (etc) |, implies that it takes 12 steps to get the octave. | As stated above, the 2/1 in the patent val is perfect. The patent val for 12 EDO, <12 19 28 34 42 (etc) |, implies that it takes 12 steps to get the octave, which is does: 12 steps * 100 cents / step = 1200 cents = 1 octave. | ||
In the patent val for 12 EDO, the number 19 is in the second spot -- the place reserved for 3/1. That implies that it takes 19 steps to get to 3/1. We know | In the patent val for 12 EDO, the number 19 is in the second spot -- the place reserved for 3/1. That implies that it takes 19 steps to get to 3/1. We know that's not true: We rounded numbers off when we created the val in the first place, so essentially we're just //acting as if// 19 steps gets you to 3/1. To put it differently, we're deliberately introducing an error into 3/1. More precisely, any time we would have used 3/1 (e.g., in 9/8, 3/2, etc.), we're going to use a slightly different number instead. | ||
We can calculate the error we're introducing into 3/1 as follows for 12 EDO: | We can calculate the error we're introducing into 3/1 as follows for 12 EDO: | ||
Line 70: | Line 70: | ||
Again, as in 12 EDO, it's less than 3, so 9/8 and 3/2 will be somewhat flat, and 4/3 will be somewhat sharp. Note that 31 EDO's prime 3 is a little farther away from 3/1 than 12 EDO's 3/1 -- i.e., it has a greater error. That means 31 EDO's 3/2 will be even flatter, and its 4/3 will be even sharper, than in 12 EDO. | Again, as in 12 EDO, it's less than 3, so 9/8 and 3/2 will be somewhat flat, and 4/3 will be somewhat sharp. Note that 31 EDO's prime 3 is a little farther away from 3/1 than 12 EDO's 3/1 -- i.e., it has a greater error. That means 31 EDO's 3/2 will be even flatter, and its 4/3 will be even sharper, than in 12 EDO. | ||
That doesn't make 31 EDO better or worse; it just means there's more error in the 3/1 ratio in 31 EDO than in 12 EDO. If you run these calculations for 5/1 using the patent vals for 12 EDO and 31 EDO, you'll find that 5/1 has more error in 12 EDO than in 31 EDO: 5.0396842 vs. 5.002262078, respectively. 31 EDO may therefore be preferred by people who like sweeter thirds (5/4 ratios) and are willing to have flatter fifths (3/2 ratios). | That doesn't make 31 EDO better or worse than 12; it just means there's more error in the 3/1 ratio in 31 EDO than in 12 EDO. If you run these calculations for 5/1 using the patent vals for 12 EDO and 31 EDO, you'll find that 5/1 has more error in 12 EDO than in 31 EDO: 5.0396842 vs. 5.002262078, respectively. 31 EDO may therefore be preferred by people who like sweeter thirds (5/4 ratios) and are willing to have flatter fifths (3/2 ratios). | ||
=How this relates to commas= | =How this relates to commas= | ||
Line 139: | Line 139: | ||
A val defines a rank 1 temperament by defining the deliberate introduction of an error into one or more primes. In 12 EDO, for instance, the perfect fifth (ratio 3/2, or exactly 1.5) is mapped to 700 cents, which is actually just barely flat: a ratio of 2^(700/1200), or 1.4983070769.<br /> | A val defines a rank 1 temperament by defining the deliberate introduction of an error into one or more primes. In 12 EDO, for instance, the perfect fifth (ratio 3/2, or exactly 1.5) is mapped to 700 cents, which is actually just barely flat: a ratio of 2^(700/1200), or 1.4983070769.<br /> | ||
<br /> | <br /> | ||
As stated above, the 2/1 in the patent val is perfect. The patent val for 12 EDO, &lt;12 19 28 34 42 (etc) |, implies that it takes 12 steps to get the octave.<br /> | As stated above, the 2/1 in the patent val is perfect. The patent val for 12 EDO, &lt;12 19 28 34 42 (etc) |, implies that it takes 12 steps to get the octave, which is does: 12 steps * 100 cents / step = 1200 cents = 1 octave.<br /> | ||
<br /> | <br /> | ||
In the patent val for 12 EDO, the number 19 is in the second spot -- the place reserved for 3/1. That implies that it takes 19 steps to get to 3/1. We know | In the patent val for 12 EDO, the number 19 is in the second spot -- the place reserved for 3/1. That implies that it takes 19 steps to get to 3/1. We know that's not true: We rounded numbers off when we created the val in the first place, so essentially we're just <em>acting as if</em> 19 steps gets you to 3/1. To put it differently, we're deliberately introducing an error into 3/1. More precisely, any time we would have used 3/1 (e.g., in 9/8, 3/2, etc.), we're going to use a slightly different number instead.<br /> | ||
<br /> | <br /> | ||
We can calculate the error we're introducing into 3/1 as follows for 12 EDO:<br /> | We can calculate the error we're introducing into 3/1 as follows for 12 EDO:<br /> | ||
Line 160: | Line 160: | ||
Again, as in 12 EDO, it's less than 3, so 9/8 and 3/2 will be somewhat flat, and 4/3 will be somewhat sharp. Note that 31 EDO's prime 3 is a little farther away from 3/1 than 12 EDO's 3/1 -- i.e., it has a greater error. That means 31 EDO's 3/2 will be even flatter, and its 4/3 will be even sharper, than in 12 EDO.<br /> | Again, as in 12 EDO, it's less than 3, so 9/8 and 3/2 will be somewhat flat, and 4/3 will be somewhat sharp. Note that 31 EDO's prime 3 is a little farther away from 3/1 than 12 EDO's 3/1 -- i.e., it has a greater error. That means 31 EDO's 3/2 will be even flatter, and its 4/3 will be even sharper, than in 12 EDO.<br /> | ||
<br /> | <br /> | ||
That doesn't make 31 EDO better or worse; it just means there's more error in the 3/1 ratio in 31 EDO than in 12 EDO. If you run these calculations for 5/1 using the patent vals for 12 EDO and 31 EDO, you'll find that 5/1 has more error in 12 EDO than in 31 EDO: 5.0396842 vs. 5.002262078, respectively. 31 EDO may therefore be preferred by people who like sweeter thirds (5/4 ratios) and are willing to have flatter fifths (3/2 ratios).<br /> | That doesn't make 31 EDO better or worse than 12; it just means there's more error in the 3/1 ratio in 31 EDO than in 12 EDO. If you run these calculations for 5/1 using the patent vals for 12 EDO and 31 EDO, you'll find that 5/1 has more error in 12 EDO than in 31 EDO: 5.0396842 vs. 5.002262078, respectively. 31 EDO may therefore be preferred by people who like sweeter thirds (5/4 ratios) and are willing to have flatter fifths (3/2 ratios).<br /> | ||
<br /> | <br /> | ||
<!-- ws:start:WikiTextHeadingRule:8:&lt;h1&gt; --><h1 id="toc4"><a name="How this relates to commas"></a><!-- ws:end:WikiTextHeadingRule:8 -->How this relates to commas</h1> | <!-- ws:start:WikiTextHeadingRule:8:&lt;h1&gt; --><h1 id="toc4"><a name="How this relates to commas"></a><!-- ws:end:WikiTextHeadingRule:8 -->How this relates to commas</h1> |