Kite's Genchain mode numbering: Difference between revisions

Wikispaces>TallKite
**Imported revision 593196788 - Original comment: **
 
Wikispaces>TallKite
**Imported revision 593196824 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:TallKite|TallKite]] and made on <tt>2016-09-24 03:39:11 UTC</tt>.<br>
: This revision was by author [[User:TallKite|TallKite]] and made on <tt>2016-09-24 03:42:53 UTC</tt>.<br>
: The original revision id was <tt>593196788</tt>.<br>
: The original revision id was <tt>593196824</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
Line 8: Line 8:
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">= =  
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">= =  
[[toc]]
[[toc]]
=__**Kite** Giedraitis method__=
==__&lt;span style="font-size: 1.3em; line-height: 1.5;"&gt;Proposed method of naming all possible rank-2 scales&lt;/span&gt;__==


**Mode numbers** provide a way to name MOS, MODMOS and even non-MOS rank-2 scales and modes systematically. Like [[xenharmonic/Modal UDP notation|Modal UDP notation]], it starts with the convention of using //some-temperament-name//[//some-number//] to create a generator-chain, and adds a way to number each mode uniquely. For example, here are all the modes of Meantone[7], using ~3/2 as the generator:
**Mode numbers** provide a way to name MOS, MODMOS and even non-MOS rank-2 scales and modes systematically. Like [[xenharmonic/Modal UDP notation|Modal UDP notation]], it starts with the convention of using //some-temperament-name//[//some-number//] to create a generator-chain, and adds a way to number each mode uniquely. For example, here are all the modes of Meantone[7], using ~3/2 as the generator:
Line 128: Line 126:




==[[#How to name rank-2 scales-Fractional-octave periods]]**__Fractional-octave periods__**==  
==[[#Fractional-octave periods]]**__Fractional-octave periods__**==  


Fractional-period rank-2 temperaments have multiple genchains running in parallel. Multiple genchains occur because a rank-2 genchain is really a 2 dimensional "genweb", running in octaves (or whatever the period is) vertically and fifths (or whatever the generator is) horizontally.
Fractional-period rank-2 temperaments have multiple genchains running in parallel. Multiple genchains occur because a rank-2 genchain is really a 2 dimensional "genweb", running in octaves (or whatever the period is) vertically and fifths (or whatever the generator is) horizontally.
Line 244: Line 242:




==[[#How to name rank-2 scales-Non-MOS scales]]**__Rank-2 scales that are neither MOS nor MODMOS__**==  
==[[#Rank-2 scales that are neither MOS nor MODMOS]]**__Rank-2 scales that are neither MOS nor MODMOS__**==  


Some scales have too many or too few notes to be MOS. If they have an unbroken genchain, they can be named Meantone [6], Meantone [8], etc. Curly brackets can be used to distinguish them from MOS scales: Meantone {6} and Meantone {8}.
Some scales have too many or too few notes to be MOS. If they have an unbroken genchain, they can be named Meantone [6], Meantone [8], etc. Curly brackets can be used to distinguish them from MOS scales: Meantone {6} and Meantone {8}.
Line 284: Line 282:




==[[#How to name rank-2 scales-Non-MOS scales]]__Numbering considerations__==  
==[[#Numbering considerations]]__Numbering considerations__==  


As long as we stick to MOS scales, terms like Meantone [5] or Meantone {6} are fine. But when we alter, add or drop notes, we need to define what "#4" means in a pentatonic or hexatonic context.
As long as we stick to MOS scales, terms like Meantone [5] or Meantone {6} are fine. But when we alter, add or drop notes, we need to define what "#4" means in a pentatonic or hexatonic context.
Line 308: Line 306:




==[[#How to name rank-2 scales-Non-MOS scales]]__Explanation / Rationale__==  
==[[#Explanation / Rationale]]__Explanation / Rationale__==  


===**__Why not number the modes in the order they occur in the scale?__**===  
===**__Why not number the modes in the order they occur in the scale?__**===  
Line 384: Line 382:


Furthermore, UDP uses the more mathematical [[https://en.wikipedia.org/wiki/Zero-based_numbering|zero-based counting]] and Mode Numbers notation uses the more intuitive one-based counting. UDP is mathematician-oriented whereas Mode Numbers notation is musician-oriented.
Furthermore, UDP uses the more mathematical [[https://en.wikipedia.org/wiki/Zero-based_numbering|zero-based counting]] and Mode Numbers notation uses the more intuitive one-based counting. UDP is mathematician-oriented whereas Mode Numbers notation is musician-oriented.
</pre></div>
<h4>Original HTML content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;Naming Rank-2 Scales using Mode Numbers&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc0"&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt; &lt;/h1&gt;
&lt;!-- ws:start:WikiTextTocRule:22:&amp;lt;img id=&amp;quot;wikitext@@toc@@normal&amp;quot; class=&amp;quot;WikiMedia WikiMediaToc&amp;quot; title=&amp;quot;Table of Contents&amp;quot; src=&amp;quot;/site/embedthumbnail/toc/normal?w=225&amp;amp;h=100&amp;quot;/&amp;gt; --&gt;&lt;div id="toc"&gt;&lt;h1 class="nopad"&gt;Table of Contents&lt;/h1&gt;&lt;!-- ws:end:WikiTextTocRule:22 --&gt;&lt;!-- ws:start:WikiTextTocRule:23: --&gt;&lt;div style="margin-left: 1em;"&gt;&lt;a href="#toc0"&gt; &lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:23 --&gt;&lt;!-- ws:start:WikiTextTocRule:24: --&gt;&lt;div style="margin-left: 2em;"&gt;&lt;a href="#x-MODMOS scales"&gt;MODMOS scales&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:24 --&gt;&lt;!-- ws:start:WikiTextTocRule:25: --&gt;&lt;div style="margin-left: 2em;"&gt;&lt;a href="#x-Fractional-octave periods"&gt;Fractional-octave periods&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:25 --&gt;&lt;!-- ws:start:WikiTextTocRule:26: --&gt;&lt;div style="margin-left: 2em;"&gt;&lt;a href="#x-Rank-2 scales that are neither MOS nor MODMOS"&gt;Rank-2 scales that are neither MOS nor MODMOS&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:26 --&gt;&lt;!-- ws:start:WikiTextTocRule:27: --&gt;&lt;div style="margin-left: 2em;"&gt;&lt;a href="#x-Numbering considerations"&gt;Numbering considerations&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:27 --&gt;&lt;!-- ws:start:WikiTextTocRule:28: --&gt;&lt;div style="margin-left: 2em;"&gt;&lt;a href="#x-Explanation / Rationale"&gt;Explanation / Rationale&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:28 --&gt;&lt;!-- ws:start:WikiTextTocRule:29: --&gt;&lt;div style="margin-left: 3em;"&gt;&lt;a href="#x-Explanation / Rationale-Why not number the modes in the order they occur in the scale?"&gt;Why not number the modes in the order they occur in the scale?&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:29 --&gt;&lt;!-- ws:start:WikiTextTocRule:30: --&gt;&lt;div style="margin-left: 3em;"&gt;&lt;a href="#x-Explanation / Rationale-Why make an exception for 3/2 vs 4/3 as the generator?"&gt;Why make an exception for 3/2 vs 4/3 as the generator?&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:30 --&gt;&lt;!-- ws:start:WikiTextTocRule:31: --&gt;&lt;div style="margin-left: 3em;"&gt;&lt;a href="#x-Explanation / Rationale-Then why not always choose the larger of the two generators?"&gt;Then why not always choose the larger of the two generators?&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:31 --&gt;&lt;!-- ws:start:WikiTextTocRule:32: --&gt;&lt;div style="margin-left: 3em;"&gt;&lt;a href="#x-Explanation / Rationale-Why not always choose the chroma-positive generator?"&gt;Why not always choose the chroma-positive generator?&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:32 --&gt;&lt;!-- ws:start:WikiTextTocRule:33: --&gt;&lt;div style="margin-left: 3em;"&gt;&lt;a href="#x-Explanation / Rationale-Why not just use UDP notation?"&gt;Why not just use UDP notation?&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:33 --&gt;&lt;!-- ws:start:WikiTextTocRule:34: --&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:34 --&gt;&lt;br /&gt;
&lt;strong&gt;Mode numbers&lt;/strong&gt; provide a way to name MOS, MODMOS and even non-MOS rank-2 scales and modes systematically. Like &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/Modal%20UDP%20notation"&gt;Modal UDP notation&lt;/a&gt;, it starts with the convention of using &lt;em&gt;some-temperament-name&lt;/em&gt;[&lt;em&gt;some-number&lt;/em&gt;] to create a generator-chain, and adds a way to number each mode uniquely. For example, here are all the modes of Meantone[7], using ~3/2 as the generator:&lt;br /&gt;




 
&lt;table class="wiki_table"&gt;
=Jake Freivald method=
     &lt;tr&gt;
My goals for numbering the modes are to make it as simple as possible for people to identify and use the modes they're talking about. As such, desired characteristics include
         &lt;td&gt;old scale name&lt;br /&gt;
(1) as little knowledge needed as possible, to help the less-sophisticated user,
&lt;/td&gt;
(2) reasonably intuitive if possible,
         &lt;td&gt;new scale name&lt;br /&gt;
(3) easy to remember and check your own work, and therefore
&lt;/td&gt;
(3a) biased toward major being the "right" answer for meantone[7], and
         &lt;td&gt;sL pattern&lt;br /&gt;
(4) extensibility of the method beyond MOS.
&lt;/td&gt;
 
         &lt;td&gt;example on white keys&lt;br /&gt;
I've created a method that uses step sizes, generally identified as s for small, M for medium, and L for large. (That would need to be extended for scales with more than three sizes of steps, of course, but the principle remains the same.)
&lt;/td&gt;
 
         &lt;td&gt;genchain&lt;br /&gt;
Once a mode 1 has been identified, each mode is counted up by steps from the root of mode 1.
&lt;/td&gt;
For example, using my method starting on C for meantone[7]:
     &lt;/tr&gt;
mode 1 is C major (LLsLLLs)
     &lt;tr&gt;
mode 2 is D dorian (LsLLLsL)
         &lt;td&gt;Lydian&lt;br /&gt;
mode 3 is E phrygian (sLLLsLL)
mode 4 is F lydian (LLLsLLs)
mode 5 is G mixolydian (LLsLLsL)
mode 6 is A minor (LsLLsLL)
mode 7 is B locrian (sLLsLLL)
 
We'll start with MOS scales. For MOS scales, we'll only have s and L steps sizes.
 
Inversion seems important for intuition. If 5L+2s is LLsLLLs, 5s+2L should be ssLsssL.
 
What if the algorithm were something like this:
 
Start with whatever you have more of, L or s. Put the smallest cluster of those you can at the beginning. Then alternate, using the smallest clusters of steps you can until it's done.
 
Some examples:
 
For 5L+2s, which is some rotation of LLsLLsL, I know I have to start with L. The smallest cluster I have is LL, so I get LLsLLLs.
 
For 1L+ys where y&gt;1, I know I start with s, which means all of them go at the front and L goes at the end: s..sL. xL+1s is L..Ls.
 
For 4L+5s, which is sLsLsLsLs, it seems a little more complicated -- but not much. 5&gt;4, so I have to start with s. I see one place where there are two s's together, so that has to go before the last L: sLsLsLssL
 
For 9L+4s, which is sLLsLLsLLsLLL, we start with L. The longest string of L's I have is three, so mode 1 is LLsLLsLLsLLLs.
 
For 7L+8s, which is sLsLsLsLsLsLsLs, we start with s and put the string ss just before the last L: mode 1 for this structure (e.g., for porcupine[15]) is sLsLsLsLsLsLssL.
 
For an MOS like 3L+3s, make it as much "like meantone[7] major" as you can: L to start, and a small leading tone: LsLsLs.
 
Note the things I *don't* need to know to do this: I don't have to know what a generator is, what mappings are, what utonality or otonality is, or a host of other things. I won't get confused by seeing intervals that don't map to JI well (e.g., phi). This is, in fact, just basic string manipulation.
 
I also have built-in checks: I know that if I start and end with the same step size that I'm doing something wrong, and using the technique for meantone[7] gives me the diatonic major scale LLsLLLs, or CDEFGABC.
 
==Extending to non-MOS==
&lt;span style="line-height: 1.5;"&gt;My suggestion is that (a) you still start with the step size that occurs the largest number of times, and (b) you still push the largest cluster of that as far out as possible. &lt;/span&gt;
 
&lt;span style="line-height: 1.5;"&gt;If the scale is made of xL+ys+zM, and any two of x, y, or z are the same, and they're larger than the third number, then the scale starts with the larger of the steps -- just like meantone major starts with larger steps. In other words, if it's 3L+3s+2M, we start with L. If it's 2L+3s+3M, we start with M.&lt;/span&gt;
 
(Note that the word "scale" is ambiguous in some of what follows. I don't think we'll get away from that in real life, so I'm just pushing on, even where it sounds weird.)
 
I'm going to start with some of the scales Kite has already used on the wiki page he created.
 
The harmonic minor scale is already structured this way: A B C D E F G# A is MsMMsLs. There are the same number of M and s steps, so M goes first. The one-step cluster of M goes first, and the two-M cluster goes second. The harmonic minor scale is mode 1 of this scale. The phyrigian dominant scale, which features in a lot of world music (I think of it as the "Hava Nagila scale"), is mode 5 of this scale.
 
Melodic minor ascending is also already structured that way: A B C D E F# G# A is LsLLLLs.
 
Double harmonic minor (never heard of this -- I learn something new every day on this list) is A B C D# E F G# A, or MsLssLs. Mode 1 will start with a small step and have the largest cluster of s's last in the scale: sMsLssL. Double harmonic minor is thus mode 2 of this scale.
 
Double harmonic major (never heard of this either) is A Bb C# D E F G# A, or sLsMssLs. Start with the smallest cluster of small steps, and this has to be sMssLssL. Double harmonic major is mode 7 of this scale.
 
Hungarian gypsy minor is A B C D# E F G A, or MsLssMM. We have the same number of s's and M's, so we start the mode with M. After that decision, there are no more to be made: It's MMMsLss. Hungarian gypsy minor is mode 3 of this scale.
 
What Kite calls "a pentatonic scale" on the wiki page he just made is C D E G A#, or LLssL. That would be LLLss, and Kite's pentatonic would be mode 2 of that scale.
 
None of these scales have had a problem that I'm about to address and resolve. To wit:
 
Let's pick a rank-3 scale: 1/1 - 9/8 - 5/4 - 4/3 - 3/2 - 5/3 - 15/8 - 2/1. (Note that this is not a temperament at all.) That's LMsLMLs. With three L's and only two M's and s's, L has to go first. But there are no larger or smaller clusters of L's! They only come one at a time. So let's pick the mode that has the longest string of non-L's to go first. (That pushes the last L out as far as it will go.) This gives us LMsLMLs, which is our original scale, which is also a convenient touchpoint, in my opinion.
 
This also works for Kite's question about meantone[8], which is LMsMLLML. There are more L's than any other step size, so the scale has to start with L. The L's are in equal clusters of two, so there's no obvious way to pick which one goes first: mode 1 must start with LL. So let's again pick the mode that has the longest string of non-L's to go after that first LL: Mode 1 of meantone[8] is LLMsMLLM. (That's C - D - E - F - F# - G - A - B - C, or something like it.)
 
Let's try something harder: the rank-3 scale [[http://x31eq.com/cgi-bin/scala.cgi?ets=12_31_22&amp;limit=11&amp;tuning=po|minerva[12],]] which I found through Graham's temperament finder. Since there are four step sizes, I'm going to label them LMms, where the capital M is larger than the small m. With steps of 113, 113, 87, 113, 87, 99, 113, 87, 113, 87, 113, and 73, that's LLmLmMLmLmLs, 6L+1M+4m+1s. L has to go first. There's a cluster of two L's in the string, and I push that as close to the end as possible: LmMLmLmLsLLm. Graham is showing mode 10 of this scale in his temperament finder.
 
NOTE: NO collapsing genchains. NO generator knowledge needed. No mapping knowledge (or indeed mapping at all) required. Extensible to higher ranks without problems. It doesn't matter whether the scale is a temperament at all.
 
=Request for admins=
 
Admins: Please delete the blank page at http://xenharmonic.wikispaces.com/Modal+Notation+by+Genchain+Position
&lt;span style="display: block; height: 1px; left: 0px; overflow: hidden; position: absolute; top: 4019.5px; width: 1px;"&gt;&lt;span style="background-color: #f6f7f8; color: #141823; font-family: helvetica,arial,sans-serif; font-size: 12px; line-height: 16.08px;"&gt;**&lt;span style="color: #3b5998;"&gt;[[https://www.facebook.com/kite.giedraitis?fref=ufi|Giedraitis]]&lt;/span&gt;** &lt;span class="UFICommentBody"&gt;Been&lt;/span&gt;&lt;/span&gt;&lt;/span&gt;</pre></div>
<h4>Original HTML content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;Naming Rank-2 Scales using Mode Numbers&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc0"&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt; &lt;/h1&gt;
&lt;!-- ws:start:WikiTextTocRule:32:&amp;lt;img id=&amp;quot;wikitext@@toc@@normal&amp;quot; class=&amp;quot;WikiMedia WikiMediaToc&amp;quot; title=&amp;quot;Table of Contents&amp;quot; src=&amp;quot;/site/embedthumbnail/toc/normal?w=225&amp;amp;h=100&amp;quot;/&amp;gt; --&gt;&lt;div id="toc"&gt;&lt;h1 class="nopad"&gt;Table of Contents&lt;/h1&gt;&lt;!-- ws:end:WikiTextTocRule:32 --&gt;&lt;!-- ws:start:WikiTextTocRule:33: --&gt;&lt;div style="margin-left: 1em;"&gt;&lt;a href="#toc0"&gt; &lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:33 --&gt;&lt;!-- ws:start:WikiTextTocRule:34: --&gt;&lt;div style="margin-left: 1em;"&gt;&lt;a href="#Kite Giedraitis method"&gt;Kite Giedraitis method&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:34 --&gt;&lt;!-- ws:start:WikiTextTocRule:35: --&gt;&lt;div style="margin-left: 2em;"&gt;&lt;a href="#Kite Giedraitis method-Proposed method of naming all possible rank-2 scales"&gt;Proposed method of naming all possible rank-2 scales&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:35 --&gt;&lt;!-- ws:start:WikiTextTocRule:36: --&gt;&lt;div style="margin-left: 2em;"&gt;&lt;a href="#Kite Giedraitis method-MODMOS scales"&gt;MODMOS scales&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:36 --&gt;&lt;!-- ws:start:WikiTextTocRule:37: --&gt;&lt;div style="margin-left: 2em;"&gt;&lt;a href="#Kite Giedraitis method-Fractional-octave periods"&gt;Fractional-octave periods&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:37 --&gt;&lt;!-- ws:start:WikiTextTocRule:38: --&gt;&lt;div style="margin-left: 2em;"&gt;&lt;a href="#Kite Giedraitis method-Rank-2 scales that are neither MOS nor MODMOS"&gt;Rank-2 scales that are neither MOS nor MODMOS&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:38 --&gt;&lt;!-- ws:start:WikiTextTocRule:39: --&gt;&lt;div style="margin-left: 2em;"&gt;&lt;a href="#Kite Giedraitis method-Numbering considerations"&gt;Numbering considerations&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:39 --&gt;&lt;!-- ws:start:WikiTextTocRule:40: --&gt;&lt;div style="margin-left: 2em;"&gt;&lt;a href="#Kite Giedraitis method-Explanation / Rationale"&gt;Explanation / Rationale&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:40 --&gt;&lt;!-- ws:start:WikiTextTocRule:41: --&gt;&lt;div style="margin-left: 3em;"&gt;&lt;a href="#Kite Giedraitis method-Explanation / Rationale-Why not number the modes in the order they occur in the scale?"&gt;Why not number the modes in the order they occur in the scale?&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:41 --&gt;&lt;!-- ws:start:WikiTextTocRule:42: --&gt;&lt;div style="margin-left: 3em;"&gt;&lt;a href="#Kite Giedraitis method-Explanation / Rationale-Why make an exception for 3/2 vs 4/3 as the generator?"&gt;Why make an exception for 3/2 vs 4/3 as the generator?&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:42 --&gt;&lt;!-- ws:start:WikiTextTocRule:43: --&gt;&lt;div style="margin-left: 3em;"&gt;&lt;a href="#Kite Giedraitis method-Explanation / Rationale-Then why not always choose the larger of the two generators?"&gt;Then why not always choose the larger of the two generators?&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:43 --&gt;&lt;!-- ws:start:WikiTextTocRule:44: --&gt;&lt;div style="margin-left: 3em;"&gt;&lt;a href="#Kite Giedraitis method-Explanation / Rationale-Why not always choose the chroma-positive generator?"&gt;Why not always choose the chroma-positive generator?&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:44 --&gt;&lt;!-- ws:start:WikiTextTocRule:45: --&gt;&lt;div style="margin-left: 3em;"&gt;&lt;a href="#Kite Giedraitis method-Explanation / Rationale-Why not just use UDP notation?"&gt;Why not just use UDP notation?&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:45 --&gt;&lt;!-- ws:start:WikiTextTocRule:46: --&gt;&lt;div style="margin-left: 1em;"&gt;&lt;a href="#Jake Freivald method"&gt;Jake Freivald method&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:46 --&gt;&lt;!-- ws:start:WikiTextTocRule:47: --&gt;&lt;div style="margin-left: 2em;"&gt;&lt;a href="#Jake Freivald method-Extending to non-MOS"&gt;Extending to non-MOS&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:47 --&gt;&lt;!-- ws:start:WikiTextTocRule:48: --&gt;&lt;div style="margin-left: 1em;"&gt;&lt;a href="#Request for admins"&gt;Request for admins&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:48 --&gt;&lt;!-- ws:start:WikiTextTocRule:49: --&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:49 --&gt;&lt;!-- ws:start:WikiTextHeadingRule:2:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc1"&gt;&lt;a name="Kite Giedraitis method"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:2 --&gt;&lt;u&gt;&lt;strong&gt;Kite&lt;/strong&gt; Giedraitis method&lt;/u&gt;&lt;/h1&gt;
&lt;!-- ws:start:WikiTextHeadingRule:4:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc2"&gt;&lt;a name="Kite Giedraitis method-Proposed method of naming all possible rank-2 scales"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:4 --&gt;&lt;u&gt;&lt;span style="font-size: 1.3em; line-height: 1.5;"&gt;Proposed method of naming all possible rank-2 scales&lt;/span&gt;&lt;/u&gt;&lt;/h2&gt;
&lt;br /&gt;
&lt;strong&gt;Mode numbers&lt;/strong&gt; provide a way to name MOS, MODMOS and even non-MOS rank-2 scales and modes systematically. Like &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/Modal%20UDP%20notation"&gt;Modal UDP notation&lt;/a&gt;, it starts with the convention of using &lt;em&gt;some-temperament-name&lt;/em&gt;[&lt;em&gt;some-number&lt;/em&gt;] to create a generator-chain, and adds a way to number each mode uniquely. For example, here are all the modes of Meantone[7], using ~3/2 as the generator:&lt;br /&gt;
 
 
&lt;table class="wiki_table"&gt;
     &lt;tr&gt;
         &lt;td&gt;old scale name&lt;br /&gt;
&lt;/td&gt;
         &lt;td&gt;new scale name&lt;br /&gt;
&lt;/td&gt;
         &lt;td&gt;sL pattern&lt;br /&gt;
&lt;/td&gt;
         &lt;td&gt;example on white keys&lt;br /&gt;
&lt;/td&gt;
         &lt;td&gt;genchain&lt;br /&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
         &lt;td&gt;Lydian&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;1st Meantone [7]&lt;br /&gt;
         &lt;td&gt;1st Meantone [7]&lt;br /&gt;
Line 1,072: Line 980:
&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:6:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc3"&gt;&lt;a name="Kite Giedraitis method-MODMOS scales"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:6 --&gt;&lt;!-- ws:start:WikiTextAnchorRule:50:&amp;lt;img src=&amp;quot;/i/anchor.gif&amp;quot; class=&amp;quot;WikiAnchor&amp;quot; alt=&amp;quot;Anchor&amp;quot; id=&amp;quot;wikitext@@anchor@@How to name rank-2 scales-MODMOS scales&amp;quot; title=&amp;quot;Anchor: How to name rank-2 scales-MODMOS scales&amp;quot;/&amp;gt; --&gt;&lt;a name="How to name rank-2 scales-MODMOS scales"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextAnchorRule:50 --&gt;&lt;strong&gt;&lt;u&gt;MODMOS scales&lt;/u&gt;&lt;/strong&gt;&lt;/h2&gt;
&lt;!-- ws:start:WikiTextHeadingRule:2:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc1"&gt;&lt;a name="x-MODMOS scales"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:2 --&gt;&lt;!-- ws:start:WikiTextAnchorRule:35:&amp;lt;img src=&amp;quot;/i/anchor.gif&amp;quot; class=&amp;quot;WikiAnchor&amp;quot; alt=&amp;quot;Anchor&amp;quot; id=&amp;quot;wikitext@@anchor@@How to name rank-2 scales-MODMOS scales&amp;quot; title=&amp;quot;Anchor: How to name rank-2 scales-MODMOS scales&amp;quot;/&amp;gt; --&gt;&lt;a name="How to name rank-2 scales-MODMOS scales"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextAnchorRule:35 --&gt;&lt;strong&gt;&lt;u&gt;MODMOS scales&lt;/u&gt;&lt;/strong&gt;&lt;/h2&gt;
  &lt;br /&gt;
  &lt;br /&gt;
&lt;a class="wiki_link" href="/MODMOS%20Scales"&gt;MODMOS&lt;/a&gt; scales are named as chromatic alterations of a MOS scale, similar to UDP notation. The ascending melodic minor scale is 5th Meantone [7] #6 #7. The &amp;quot;#&amp;quot; symbol means moved N steps forwards on the genchain, whether the generator is chroma-positive or not. This scale has the same name in 16edo, even though in 16edo, G# is actually flat of G.&lt;br /&gt;
&lt;a class="wiki_link" href="/MODMOS%20Scales"&gt;MODMOS&lt;/a&gt; scales are named as chromatic alterations of a MOS scale, similar to UDP notation. The ascending melodic minor scale is 5th Meantone [7] #6 #7. The &amp;quot;#&amp;quot; symbol means moved N steps forwards on the genchain, whether the generator is chroma-positive or not. This scale has the same name in 16edo, even though in 16edo, G# is actually flat of G.&lt;br /&gt;
Line 1,239: Line 1,147:
&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:8:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc4"&gt;&lt;a name="Kite Giedraitis method-Fractional-octave periods"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:8 --&gt;&lt;!-- ws:start:WikiTextAnchorRule:51:&amp;lt;img src=&amp;quot;/i/anchor.gif&amp;quot; class=&amp;quot;WikiAnchor&amp;quot; alt=&amp;quot;Anchor&amp;quot; id=&amp;quot;wikitext@@anchor@@How to name rank-2 scales-Fractional-octave periods&amp;quot; title=&amp;quot;Anchor: How to name rank-2 scales-Fractional-octave periods&amp;quot;/&amp;gt; --&gt;&lt;a name="How to name rank-2 scales-Fractional-octave periods"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextAnchorRule:51 --&gt;&lt;strong&gt;&lt;u&gt;Fractional-octave periods&lt;/u&gt;&lt;/strong&gt;&lt;/h2&gt;
&lt;!-- ws:start:WikiTextHeadingRule:4:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc2"&gt;&lt;a name="x-Fractional-octave periods"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:4 --&gt;&lt;!-- ws:start:WikiTextAnchorRule:36:&amp;lt;img src=&amp;quot;/i/anchor.gif&amp;quot; class=&amp;quot;WikiAnchor&amp;quot; alt=&amp;quot;Anchor&amp;quot; id=&amp;quot;wikitext@@anchor@@Fractional-octave periods&amp;quot; title=&amp;quot;Anchor: Fractional-octave periods&amp;quot;/&amp;gt; --&gt;&lt;a name="Fractional-octave periods"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextAnchorRule:36 --&gt;&lt;strong&gt;&lt;u&gt;Fractional-octave periods&lt;/u&gt;&lt;/strong&gt;&lt;/h2&gt;
  &lt;br /&gt;
  &lt;br /&gt;
Fractional-period rank-2 temperaments have multiple genchains running in parallel. Multiple genchains occur because a rank-2 genchain is really a 2 dimensional &amp;quot;genweb&amp;quot;, running in octaves (or whatever the period is) vertically and fifths (or whatever the generator is) horizontally.&lt;br /&gt;
Fractional-period rank-2 temperaments have multiple genchains running in parallel. Multiple genchains occur because a rank-2 genchain is really a 2 dimensional &amp;quot;genweb&amp;quot;, running in octaves (or whatever the period is) vertically and fifths (or whatever the generator is) horizontally.&lt;br /&gt;
Line 1,508: Line 1,416:
&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:10:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc5"&gt;&lt;a name="Kite Giedraitis method-Rank-2 scales that are neither MOS nor MODMOS"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:10 --&gt;&lt;!-- ws:start:WikiTextAnchorRule:52:&amp;lt;img src=&amp;quot;/i/anchor.gif&amp;quot; class=&amp;quot;WikiAnchor&amp;quot; alt=&amp;quot;Anchor&amp;quot; id=&amp;quot;wikitext@@anchor@@How to name rank-2 scales-Non-MOS scales&amp;quot; title=&amp;quot;Anchor: How to name rank-2 scales-Non-MOS scales&amp;quot;/&amp;gt; --&gt;&lt;a name="How to name rank-2 scales-Non-MOS scales"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextAnchorRule:52 --&gt;&lt;strong&gt;&lt;u&gt;Rank-2 scales that are neither MOS nor MODMOS&lt;/u&gt;&lt;/strong&gt;&lt;/h2&gt;
&lt;!-- ws:start:WikiTextHeadingRule:6:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc3"&gt;&lt;a name="x-Rank-2 scales that are neither MOS nor MODMOS"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:6 --&gt;&lt;!-- ws:start:WikiTextAnchorRule:37:&amp;lt;img src=&amp;quot;/i/anchor.gif&amp;quot; class=&amp;quot;WikiAnchor&amp;quot; alt=&amp;quot;Anchor&amp;quot; id=&amp;quot;wikitext@@anchor@@Rank-2 scales that are neither MOS nor MODMOS&amp;quot; title=&amp;quot;Anchor: Rank-2 scales that are neither MOS nor MODMOS&amp;quot;/&amp;gt; --&gt;&lt;a name="Rank-2 scales that are neither MOS nor MODMOS"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextAnchorRule:37 --&gt;&lt;strong&gt;&lt;u&gt;Rank-2 scales that are neither MOS nor MODMOS&lt;/u&gt;&lt;/strong&gt;&lt;/h2&gt;
  &lt;br /&gt;
  &lt;br /&gt;
Some scales have too many or too few notes to be MOS. If they have an unbroken genchain, they can be named Meantone [6], Meantone [8], etc. Curly brackets can be used to distinguish them from MOS scales: Meantone {6} and Meantone {8}.&lt;br /&gt;
Some scales have too many or too few notes to be MOS. If they have an unbroken genchain, they can be named Meantone [6], Meantone [8], etc. Curly brackets can be used to distinguish them from MOS scales: Meantone {6} and Meantone {8}.&lt;br /&gt;
Line 1,759: Line 1,667:
&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:12:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc6"&gt;&lt;a name="Kite Giedraitis method-Numbering considerations"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:12 --&gt;&lt;!-- ws:start:WikiTextAnchorRule:53:&amp;lt;img src=&amp;quot;/i/anchor.gif&amp;quot; class=&amp;quot;WikiAnchor&amp;quot; alt=&amp;quot;Anchor&amp;quot; id=&amp;quot;wikitext@@anchor@@How to name rank-2 scales-Non-MOS scales&amp;quot; title=&amp;quot;Anchor: How to name rank-2 scales-Non-MOS scales&amp;quot;/&amp;gt; --&gt;&lt;a name="How to name rank-2 scales-Non-MOS scales"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextAnchorRule:53 --&gt;&lt;u&gt;Numbering considerations&lt;/u&gt;&lt;/h2&gt;
&lt;!-- ws:start:WikiTextHeadingRule:8:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc4"&gt;&lt;a name="x-Numbering considerations"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:8 --&gt;&lt;!-- ws:start:WikiTextAnchorRule:38:&amp;lt;img src=&amp;quot;/i/anchor.gif&amp;quot; class=&amp;quot;WikiAnchor&amp;quot; alt=&amp;quot;Anchor&amp;quot; id=&amp;quot;wikitext@@anchor@@Numbering considerations&amp;quot; title=&amp;quot;Anchor: Numbering considerations&amp;quot;/&amp;gt; --&gt;&lt;a name="Numbering considerations"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextAnchorRule:38 --&gt;&lt;u&gt;Numbering considerations&lt;/u&gt;&lt;/h2&gt;
  &lt;br /&gt;
  &lt;br /&gt;
As long as we stick to MOS scales, terms like Meantone [5] or Meantone {6} are fine. But when we alter, add or drop notes, we need to define what &amp;quot;#4&amp;quot; means in a pentatonic or hexatonic context.&lt;br /&gt;
As long as we stick to MOS scales, terms like Meantone [5] or Meantone {6} are fine. But when we alter, add or drop notes, we need to define what &amp;quot;#4&amp;quot; means in a pentatonic or hexatonic context.&lt;br /&gt;
Line 1,783: Line 1,691:
&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:14:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc7"&gt;&lt;a name="Kite Giedraitis method-Explanation / Rationale"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:14 --&gt;&lt;!-- ws:start:WikiTextAnchorRule:54:&amp;lt;img src=&amp;quot;/i/anchor.gif&amp;quot; class=&amp;quot;WikiAnchor&amp;quot; alt=&amp;quot;Anchor&amp;quot; id=&amp;quot;wikitext@@anchor@@How to name rank-2 scales-Non-MOS scales&amp;quot; title=&amp;quot;Anchor: How to name rank-2 scales-Non-MOS scales&amp;quot;/&amp;gt; --&gt;&lt;a name="How to name rank-2 scales-Non-MOS scales"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextAnchorRule:54 --&gt;&lt;u&gt;Explanation / Rationale&lt;/u&gt;&lt;/h2&gt;
&lt;!-- ws:start:WikiTextHeadingRule:10:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc5"&gt;&lt;a name="x-Explanation / Rationale"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:10 --&gt;&lt;!-- ws:start:WikiTextAnchorRule:39:&amp;lt;img src=&amp;quot;/i/anchor.gif&amp;quot; class=&amp;quot;WikiAnchor&amp;quot; alt=&amp;quot;Anchor&amp;quot; id=&amp;quot;wikitext@@anchor@@Explanation / Rationale&amp;quot; title=&amp;quot;Anchor: Explanation / Rationale&amp;quot;/&amp;gt; --&gt;&lt;a name="Explanation / Rationale"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextAnchorRule:39 --&gt;&lt;u&gt;Explanation / Rationale&lt;/u&gt;&lt;/h2&gt;
  &lt;br /&gt;
  &lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:16:&amp;lt;h3&amp;gt; --&gt;&lt;h3 id="toc8"&gt;&lt;a name="Kite Giedraitis method-Explanation / Rationale-Why not number the modes in the order they occur in the scale?"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:16 --&gt;&lt;strong&gt;&lt;u&gt;Why not number the modes in the order they occur in the scale?&lt;/u&gt;&lt;/strong&gt;&lt;/h3&gt;
&lt;!-- ws:start:WikiTextHeadingRule:12:&amp;lt;h3&amp;gt; --&gt;&lt;h3 id="toc6"&gt;&lt;a name="x-Explanation / Rationale-Why not number the modes in the order they occur in the scale?"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:12 --&gt;&lt;strong&gt;&lt;u&gt;Why not number the modes in the order they occur in the scale?&lt;/u&gt;&lt;/strong&gt;&lt;/h3&gt;
  &lt;br /&gt;
  &lt;br /&gt;
Scale-based numbering would order the modes Ionian, Dorian, Phrygian, etc.&lt;br /&gt;
Scale-based numbering would order the modes Ionian, Dorian, Phrygian, etc.&lt;br /&gt;
Line 1,797: Line 1,705:
The disadvantage of genchain-based numbering is that the mode numbers are harder to relate to the scale. However this is arguably an advantage, because in the course of learning to relate the mode numbers, one internalizes the genchain.&lt;br /&gt;
The disadvantage of genchain-based numbering is that the mode numbers are harder to relate to the scale. However this is arguably an advantage, because in the course of learning to relate the mode numbers, one internalizes the genchain.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:18:&amp;lt;h3&amp;gt; --&gt;&lt;h3 id="toc9"&gt;&lt;a name="Kite Giedraitis method-Explanation / Rationale-Why make an exception for 3/2 vs 4/3 as the generator?"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:18 --&gt;&lt;u&gt;&lt;strong&gt;Why make an exception for 3/2 vs 4/3 as the generator?&lt;/strong&gt;&lt;/u&gt;&lt;/h3&gt;
&lt;!-- ws:start:WikiTextHeadingRule:14:&amp;lt;h3&amp;gt; --&gt;&lt;h3 id="toc7"&gt;&lt;a name="x-Explanation / Rationale-Why make an exception for 3/2 vs 4/3 as the generator?"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:14 --&gt;&lt;u&gt;&lt;strong&gt;Why make an exception for 3/2 vs 4/3 as the generator?&lt;/strong&gt;&lt;/u&gt;&lt;/h3&gt;
  &lt;br /&gt;
  &lt;br /&gt;
There are centuries of established thought that the fifth, not the fourth, generates the pythagorean, meantone and well tempered scales, as these quotes show (emphasis mine):&lt;br /&gt;
There are centuries of established thought that the fifth, not the fourth, generates the pythagorean, meantone and well tempered scales, as these quotes show (emphasis mine):&lt;br /&gt;
Line 1,814: Line 1,722:
&amp;quot;A foolish consistency is the hobgoblin of little minds&amp;quot;. To choose 4/3 over 3/2 merely for the sake of consistency would be pointless. Unlike a &lt;u&gt;wise&lt;/u&gt; consistency, it wouldn't reduce memorization, because everyone already knows that the generator is historically 3/2.&lt;br /&gt;
&amp;quot;A foolish consistency is the hobgoblin of little minds&amp;quot;. To choose 4/3 over 3/2 merely for the sake of consistency would be pointless. Unlike a &lt;u&gt;wise&lt;/u&gt; consistency, it wouldn't reduce memorization, because everyone already knows that the generator is historically 3/2.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:20:&amp;lt;h3&amp;gt; --&gt;&lt;h3 id="toc10"&gt;&lt;a name="Kite Giedraitis method-Explanation / Rationale-Then why not always choose the larger of the two generators?"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:20 --&gt;&lt;u&gt;&lt;strong&gt;Then why not always choose the larger of the two generators?&lt;/strong&gt;&lt;/u&gt;&lt;/h3&gt;
&lt;!-- ws:start:WikiTextHeadingRule:16:&amp;lt;h3&amp;gt; --&gt;&lt;h3 id="toc8"&gt;&lt;a name="x-Explanation / Rationale-Then why not always choose the larger of the two generators?"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:16 --&gt;&lt;u&gt;&lt;strong&gt;Then why not always choose the larger of the two generators?&lt;/strong&gt;&lt;/u&gt;&lt;/h3&gt;
  &lt;br /&gt;
  &lt;br /&gt;
Because the interval arithmetic is easier with smaller intervals. It's easier to add up stacked 2nds than stacked 7ths. Also, when the generator is a 2nd, the genchain is often identical to the scale, simplifying mode numbering. (See Porcupine [7] above.)&lt;br /&gt;
Because the interval arithmetic is easier with smaller intervals. It's easier to add up stacked 2nds than stacked 7ths. Also, when the generator is a 2nd, the genchain is often identical to the scale, simplifying mode numbering. (See Porcupine [7] above.)&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:22:&amp;lt;h3&amp;gt; --&gt;&lt;h3 id="toc11"&gt;&lt;a name="Kite Giedraitis method-Explanation / Rationale-Why not always choose the chroma-positive generator?"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:22 --&gt;&lt;u&gt;Why not always choose the chroma-positive generator?&lt;/u&gt;&lt;/h3&gt;
&lt;!-- ws:start:WikiTextHeadingRule:18:&amp;lt;h3&amp;gt; --&gt;&lt;h3 id="toc9"&gt;&lt;a name="x-Explanation / Rationale-Why not always choose the chroma-positive generator?"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:18 --&gt;&lt;u&gt;Why not always choose the chroma-positive generator?&lt;/u&gt;&lt;/h3&gt;
  &lt;br /&gt;
  &lt;br /&gt;
See below.&lt;br /&gt;
See below.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:24:&amp;lt;h3&amp;gt; --&gt;&lt;h3 id="toc12"&gt;&lt;a name="Kite Giedraitis method-Explanation / Rationale-Why not just use UDP notation?"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:24 --&gt;&lt;u&gt;&lt;strong&gt;Why not just use UDP notation?&lt;/strong&gt;&lt;/u&gt;&lt;/h3&gt;
&lt;!-- ws:start:WikiTextHeadingRule:20:&amp;lt;h3&amp;gt; --&gt;&lt;h3 id="toc10"&gt;&lt;a name="x-Explanation / Rationale-Why not just use UDP notation?"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:20 --&gt;&lt;u&gt;&lt;strong&gt;Why not just use UDP notation?&lt;/strong&gt;&lt;/u&gt;&lt;/h3&gt;
  &lt;br /&gt;
  &lt;br /&gt;
One problem with &lt;a class="wiki_link" href="/Modal%20UDP%20Notation"&gt;UDP&lt;/a&gt; is that avoiding chroma-negative generators causes the genchain to reverse direction frequently as you lengthen or shorten it, which affects the mode names. If exploring the various MOS's of a temperament, one has to constantly check the genchain direction. In Mode Numbers notation, the direction is unchanging.&lt;br /&gt;
One problem with &lt;a class="wiki_link" href="/Modal%20UDP%20Notation"&gt;UDP&lt;/a&gt; is that avoiding chroma-negative generators causes the genchain to reverse direction frequently as you lengthen or shorten it, which affects the mode names. If exploring the various MOS's of a temperament, one has to constantly check the genchain direction. In Mode Numbers notation, the direction is unchanging.&lt;br /&gt;
Line 2,014: Line 1,922:
Also, when comparing different MOS's of a temperament, with Mode Numbers notation but not with UDP, the Nth mode of the smaller MOS is always a subset of the Nth mode of the larger MOS. For example, Meantone [5] is generated by 3/2, not 4/3 as with UDP. Because Meantone [5] and Meantone [7] have the same generator, C 2nd Meantone [5] = C D F G A C is a subset of C 2nd Meantone [7] = C D E F G A B C. But using UDP, C Meantone 3|1 = C Eb F G Bb C isn't a subset of C Meantone 5|1 = C D E F G A B C.&lt;br /&gt;
Also, when comparing different MOS's of a temperament, with Mode Numbers notation but not with UDP, the Nth mode of the smaller MOS is always a subset of the Nth mode of the larger MOS. For example, Meantone [5] is generated by 3/2, not 4/3 as with UDP. Because Meantone [5] and Meantone [7] have the same generator, C 2nd Meantone [5] = C D F G A C is a subset of C 2nd Meantone [7] = C D E F G A B C. But using UDP, C Meantone 3|1 = C Eb F G Bb C isn't a subset of C Meantone 5|1 = C D E F G A B C.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
Furthermore, UDP uses the more mathematical &lt;a class="wiki_link_ext" href="https://en.wikipedia.org/wiki/Zero-based_numbering" rel="nofollow"&gt;zero-based counting&lt;/a&gt; and Mode Numbers notation uses the more intuitive one-based counting. UDP is mathematician-oriented whereas Mode Numbers notation is musician-oriented.&lt;br /&gt;
Furthermore, UDP uses the more mathematical &lt;a class="wiki_link_ext" href="https://en.wikipedia.org/wiki/Zero-based_numbering" rel="nofollow"&gt;zero-based counting&lt;/a&gt; and Mode Numbers notation uses the more intuitive one-based counting. UDP is mathematician-oriented whereas Mode Numbers notation is musician-oriented.&lt;/body&gt;&lt;/html&gt;</pre></div>
&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:26:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc13"&gt;&lt;a name="Jake Freivald method"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:26 --&gt;Jake Freivald method&lt;/h1&gt;
My goals for numbering the modes are to make it as simple as possible for people to identify and use the modes they're talking about. As such, desired characteristics include&lt;br /&gt;
(1) as little knowledge needed as possible, to help the less-sophisticated user,&lt;br /&gt;
(2) reasonably intuitive if possible,&lt;br /&gt;
(3) easy to remember and check your own work, and therefore&lt;br /&gt;
(3a) biased toward major being the &amp;quot;right&amp;quot; answer for meantone[7], and&lt;br /&gt;
(4) extensibility of the method beyond MOS.&lt;br /&gt;
&lt;br /&gt;
I've created a method that uses step sizes, generally identified as s for small, M for medium, and L for large. (That would need to be extended for scales with more than three sizes of steps, of course, but the principle remains the same.)&lt;br /&gt;
&lt;br /&gt;
Once a mode 1 has been identified, each mode is counted up by steps from the root of mode 1.&lt;br /&gt;
For example, using my method starting on C for meantone[7]:&lt;br /&gt;
mode 1 is C major (LLsLLLs)&lt;br /&gt;
mode 2 is D dorian (LsLLLsL)&lt;br /&gt;
mode 3 is E phrygian (sLLLsLL)&lt;br /&gt;
mode 4 is F lydian (LLLsLLs)&lt;br /&gt;
mode 5 is G mixolydian (LLsLLsL)&lt;br /&gt;
mode 6 is A minor (LsLLsLL)&lt;br /&gt;
mode 7 is B locrian (sLLsLLL)&lt;br /&gt;
&lt;br /&gt;
We'll start with MOS scales. For MOS scales, we'll only have s and L steps sizes.&lt;br /&gt;
&lt;br /&gt;
Inversion seems important for intuition. If 5L+2s is LLsLLLs, 5s+2L should be ssLsssL.&lt;br /&gt;
&lt;br /&gt;
What if the algorithm were something like this:&lt;br /&gt;
&lt;br /&gt;
Start with whatever you have more of, L or s. Put the smallest cluster of those you can at the beginning. Then alternate, using the smallest clusters of steps you can until it's done.&lt;br /&gt;
&lt;br /&gt;
Some examples:&lt;br /&gt;
&lt;br /&gt;
For 5L+2s, which is some rotation of LLsLLsL, I know I have to start with L. The smallest cluster I have is LL, so I get LLsLLLs.&lt;br /&gt;
&lt;br /&gt;
For 1L+ys where y&amp;gt;1, I know I start with s, which means all of them go at the front and L goes at the end: s..sL. xL+1s is L..Ls.&lt;br /&gt;
&lt;br /&gt;
For 4L+5s, which is sLsLsLsLs, it seems a little more complicated -- but not much. 5&amp;gt;4, so I have to start with s. I see one place where there are two s's together, so that has to go before the last L: sLsLsLssL&lt;br /&gt;
&lt;br /&gt;
For 9L+4s, which is sLLsLLsLLsLLL, we start with L. The longest string of L's I have is three, so mode 1 is LLsLLsLLsLLLs.&lt;br /&gt;
&lt;br /&gt;
For 7L+8s, which is sLsLsLsLsLsLsLs, we start with s and put the string ss just before the last L: mode 1 for this structure (e.g., for porcupine[15]) is sLsLsLsLsLsLssL.&lt;br /&gt;
&lt;br /&gt;
For an MOS like 3L+3s, make it as much &amp;quot;like meantone[7] major&amp;quot; as you can: L to start, and a small leading tone: LsLsLs.&lt;br /&gt;
&lt;br /&gt;
Note the things I *don't* need to know to do this: I don't have to know what a generator is, what mappings are, what utonality or otonality is, or a host of other things. I won't get confused by seeing intervals that don't map to JI well (e.g., phi). This is, in fact, just basic string manipulation.&lt;br /&gt;
&lt;br /&gt;
I also have built-in checks: I know that if I start and end with the same step size that I'm doing something wrong, and using the technique for meantone[7] gives me the diatonic major scale LLsLLLs, or CDEFGABC.&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:28:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc14"&gt;&lt;a name="Jake Freivald method-Extending to non-MOS"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:28 --&gt;Extending to non-MOS&lt;/h2&gt;
&lt;span style="line-height: 1.5;"&gt;My suggestion is that (a) you still start with the step size that occurs the largest number of times, and (b) you still push the largest cluster of that as far out as possible. &lt;/span&gt;&lt;br /&gt;
&lt;br /&gt;
&lt;span style="line-height: 1.5;"&gt;If the scale is made of xL+ys+zM, and any two of x, y, or z are the same, and they're larger than the third number, then the scale starts with the larger of the steps -- just like meantone major starts with larger steps. In other words, if it's 3L+3s+2M, we start with L. If it's 2L+3s+3M, we start with M.&lt;/span&gt;&lt;br /&gt;
&lt;br /&gt;
(Note that the word &amp;quot;scale&amp;quot; is ambiguous in some of what follows. I don't think we'll get away from that in real life, so I'm just pushing on, even where it sounds weird.)&lt;br /&gt;
&lt;br /&gt;
I'm going to start with some of the scales Kite has already used on the wiki page he created.&lt;br /&gt;
&lt;br /&gt;
The harmonic minor scale is already structured this way: A B C D E F G# A is MsMMsLs. There are the same number of M and s steps, so M goes first. The one-step cluster of M goes first, and the two-M cluster goes second. The harmonic minor scale is mode 1 of this scale. The phyrigian dominant scale, which features in a lot of world music (I think of it as the &amp;quot;Hava Nagila scale&amp;quot;), is mode 5 of this scale.&lt;br /&gt;
&lt;br /&gt;
Melodic minor ascending is also already structured that way: A B C D E F# G# A is LsLLLLs.&lt;br /&gt;
&lt;br /&gt;
Double harmonic minor (never heard of this -- I learn something new every day on this list) is A B C D# E F G# A, or MsLssLs. Mode 1 will start with a small step and have the largest cluster of s's last in the scale: sMsLssL. Double harmonic minor is thus mode 2 of this scale.&lt;br /&gt;
&lt;br /&gt;
Double harmonic major (never heard of this either) is A Bb C# D E F G# A, or sLsMssLs. Start with the smallest cluster of small steps, and this has to be sMssLssL. Double harmonic major is mode 7 of this scale.&lt;br /&gt;
&lt;br /&gt;
Hungarian gypsy minor is A B C D# E F G A, or MsLssMM. We have the same number of s's and M's, so we start the mode with M. After that decision, there are no more to be made: It's MMMsLss. Hungarian gypsy minor is mode 3 of this scale.&lt;br /&gt;
&lt;br /&gt;
What Kite calls &amp;quot;a pentatonic scale&amp;quot; on the wiki page he just made is C D E G A#, or LLssL. That would be LLLss, and Kite's pentatonic would be mode 2 of that scale.&lt;br /&gt;
&lt;br /&gt;
None of these scales have had a problem that I'm about to address and resolve. To wit:&lt;br /&gt;
&lt;br /&gt;
Let's pick a rank-3 scale: 1/1 - 9/8 - 5/4 - 4/3 - 3/2 - 5/3 - 15/8 - 2/1. (Note that this is not a temperament at all.) That's LMsLMLs. With three L's and only two M's and s's, L has to go first. But there are no larger or smaller clusters of L's! They only come one at a time. So let's pick the mode that has the longest string of non-L's to go first. (That pushes the last L out as far as it will go.) This gives us LMsLMLs, which is our original scale, which is also a convenient touchpoint, in my opinion.&lt;br /&gt;
&lt;br /&gt;
This also works for Kite's question about meantone[8], which is LMsMLLML. There are more L's than any other step size, so the scale has to start with L. The L's are in equal clusters of two, so there's no obvious way to pick which one goes first: mode 1 must start with LL. So let's again pick the mode that has the longest string of non-L's to go after that first LL: Mode 1 of meantone[8] is LLMsMLLM. (That's C - D - E - F - F# - G - A - B - C, or something like it.)&lt;br /&gt;
&lt;br /&gt;
Let's try something harder: the rank-3 scale &lt;a class="wiki_link_ext" href="http://x31eq.com/cgi-bin/scala.cgi?ets=12_31_22&amp;amp;limit=11&amp;amp;tuning=po" rel="nofollow"&gt;minerva[12],&lt;/a&gt; which I found through Graham's temperament finder. Since there are four step sizes, I'm going to label them LMms, where the capital M is larger than the small m. With steps of 113, 113, 87, 113, 87, 99, 113, 87, 113, 87, 113, and 73, that's LLmLmMLmLmLs, 6L+1M+4m+1s. L has to go first. There's a cluster of two L's in the string, and I push that as close to the end as possible: LmMLmLmLsLLm. Graham is showing mode 10 of this scale in his temperament finder.&lt;br /&gt;
&lt;br /&gt;
NOTE: NO collapsing genchains. NO generator knowledge needed. No mapping knowledge (or indeed mapping at all) required. Extensible to higher ranks without problems. It doesn't matter whether the scale is a temperament at all.&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:30:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc15"&gt;&lt;a name="Request for admins"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:30 --&gt;Request for admins&lt;/h1&gt;
&lt;br /&gt;
Admins: Please delete the blank page at &lt;!-- ws:start:WikiTextUrlRule:2145:http://xenharmonic.wikispaces.com/Modal+Notation+by+Genchain+Position --&gt;&lt;a href="http://xenharmonic.wikispaces.com/Modal+Notation+by+Genchain+Position"&gt;http://xenharmonic.wikispaces.com/Modal+Notation+by+Genchain+Position&lt;/a&gt;&lt;!-- ws:end:WikiTextUrlRule:2145 --&gt;&lt;br /&gt;
&lt;span style="display: block; height: 1px; left: 0px; overflow: hidden; position: absolute; top: 4019.5px; width: 1px;"&gt;&lt;span style="background-color: #f6f7f8; color: #141823; font-family: helvetica,arial,sans-serif; font-size: 12px; line-height: 16.08px;"&gt;&lt;strong&gt;&lt;span style="color: #3b5998;"&gt;&lt;a class="wiki_link_ext" href="https://www.facebook.com/kite.giedraitis?fref=ufi" rel="nofollow"&gt;Giedraitis&lt;/a&gt;&lt;/span&gt;&lt;/strong&gt; &lt;span class="UFICommentBody"&gt;Been&lt;/span&gt;&lt;/span&gt;&lt;/span&gt;&lt;/body&gt;&lt;/html&gt;</pre></div>