Kite's Genchain mode numbering: Difference between revisions
Wikispaces>TallKite **Imported revision 593233744 - Original comment: ** |
Wikispaces>TallKite **Imported revision 593233858 - Original comment: ** |
||
Line 1: | Line 1: | ||
<h2>IMPORTED REVISION FROM WIKISPACES</h2> | <h2>IMPORTED REVISION FROM WIKISPACES</h2> | ||
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | ||
: This revision was by author [[User:TallKite|TallKite]] and made on <tt>2016-09-25 07: | : This revision was by author [[User:TallKite|TallKite]] and made on <tt>2016-09-25 07:57:27 UTC</tt>.<br> | ||
: The original revision id was <tt> | : The original revision id was <tt>593233858</tt>.<br> | ||
: The revision comment was: <tt></tt><br> | : The revision comment was: <tt></tt><br> | ||
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | ||
Line 34: | Line 34: | ||
|| Locrian || 7th Meantone [7] || sLLs LLL || C Db Eb F Gb Ab Bb C || Gb Db Ab Eb Bb F __**C**__ || | || Locrian || 7th Meantone [7] || sLLs LLL || C Db Eb F Gb Ab Bb C || Gb Db Ab Eb Bb F __**C**__ || | ||
The octave inverse of a generator is also a generator. To avoid ambiguity in mode numbers, the smaller of the two generators is chosen. An exception is made for 3/2, which is preferred over 4/3 for historical reasons (see below). **__Unlike modal UDP notation, the generator isn't always chroma-positive__.** There are several disadvantages of only using chroma-positive generators, see the critique of UDP at the bottom of this page. | The octave inverse of a generator is also a generator. To avoid ambiguity in mode numbers, the smaller of the two generators is chosen. An exception is made for 3/2, which is preferred over 4/3 for historical reasons (see below in "Explanation"). **__Unlike modal UDP notation, the generator isn't always chroma-positive__.** There are several disadvantages of only using chroma-positive generators, see the critique of UDP at the bottom of this page. | ||
Pentatonic meantone scales: | Pentatonic meantone scales: | ||
Line 290: | Line 290: | ||
If the scale is written using heptatonically using 7 note names, the degree numbers are heptatonic. C D E G A# is written 1st Meantone [5] #6. If the scale were written pentatonically using 5 note names, perhaps J K L M #N, it would be 1st Meantone [5] #5. If discussing scales in the abstract without reference to any note names, one need to specify which type of numbering is bering used. | If the scale is written using heptatonically using 7 note names, the degree numbers are heptatonic. C D E G A# is written 1st Meantone [5] #6. If the scale were written pentatonically using 5 note names, perhaps J K L M #N, it would be 1st Meantone [5] #5. If discussing scales in the abstract without reference to any note names, one need to specify which type of numbering is bering used. | ||
The scale of 8\13 fifths A C B D F E G A mentioned above can't be notated with fifth-based heptatonic and requires pentatonic notation. Because the pentatonic fifth is chroma-negative, the fifthward side of the genchain is flat and the fourthwards side is sharp (assuming a fifth < 720¢). Use "+" for fifthwards and "-" for fourthwards. | The scale of 8\13 fifths A C B D F E G A mentioned above can't be notated with fifth-based heptatonic and requires pentatonic notation. Because the pentatonic fifth is chroma-negative, the fifthward side of the genchain is flat and the fourthwards side is sharp (assuming a fifth < 720¢). Use "+" for fifthwards and "-" for fourthwards. | ||
Using J K L M N for note names, and arbitrarily centering the genchain on L, we get this genchain: | Using J K L M N for note names, and arbitrarily centering the genchain on L, we get this genchain: | ||
Line 398: | Line 398: | ||
An even larger problem is that the notation is overly tuning-dependent. Meantone [12] generated by 701¢ has a different genchain than Meantone [12] generated by 699¢, so slight differences in tempering result in different mode names. One might address this problem by reasonably constraining meantone's fifth to be less than 700¢. Likewise one could constrain Superpyth [12]'s fifth to be more than 700¢. But this approach fails with Dominant meantone, which tempers out both 81/80 and 64/63, and in which the fifth can reasonably be either more or less than 700¢. This makes every single UDP mode of Dominant [12] ambiguous. For example "Dominant 8|3" could mean either "4th Dominant [12]" or "9th Dominant [12]". Something similar happens with Meantone [19]. If the fifth is greater than 694¢ = 11\19, the generator is 3/2, but if less than 694¢, it's 4/3. This makes every UDP mode of Meantone [19] ambiguous. Another example is Dicot [7] when the neutral 3rd generator is greater or less than 2\7 = 343¢. Another example is Semaphore [5]'s generator of ~8/7 or ~7/6 if near 1\5 = 240¢. In general, this ambiguity arises whenever the generator of an N-note MOS ranges from slightly flat of any N-edo interval to slightly sharp of it. | An even larger problem is that the notation is overly tuning-dependent. Meantone [12] generated by 701¢ has a different genchain than Meantone [12] generated by 699¢, so slight differences in tempering result in different mode names. One might address this problem by reasonably constraining meantone's fifth to be less than 700¢. Likewise one could constrain Superpyth [12]'s fifth to be more than 700¢. But this approach fails with Dominant meantone, which tempers out both 81/80 and 64/63, and in which the fifth can reasonably be either more or less than 700¢. This makes every single UDP mode of Dominant [12] ambiguous. For example "Dominant 8|3" could mean either "4th Dominant [12]" or "9th Dominant [12]". Something similar happens with Meantone [19]. If the fifth is greater than 694¢ = 11\19, the generator is 3/2, but if less than 694¢, it's 4/3. This makes every UDP mode of Meantone [19] ambiguous. Another example is Dicot [7] when the neutral 3rd generator is greater or less than 2\7 = 343¢. Another example is Semaphore [5]'s generator of ~8/7 or ~7/6 if near 1\5 = 240¢. In general, this ambiguity arises whenever the generator of an N-note MOS ranges from slightly flat of any N-edo interval to slightly sharp of it. | ||
Three other problems with UDP are more issues of taste. The most important piece of information, the number of notes in the scale, is hidden by UDP notation. It must be calculated by adding together the up, down, and period numbers (and the period number is often omitted). For example, to determine that Meantone 5|1 is heptatonic, one must add the 5, the 1 and the omitted 1. If the number of notes is indicated with brackets, e.g. Meantone [7] 5|1, then three numbers are used where only two are needed. And fractional-period temperaments, e.g. | Three other problems with UDP are more issues of taste. The most important piece of information, the number of notes in the scale, is hidden by UDP notation. It must be calculated by adding together the up, down, and period numbers (and the period number is often omitted). For example, to determine that Meantone 5|1 is heptatonic, one must add the 5, the 1 and the omitted 1. If the number of notes is indicated with brackets, e.g. Meantone [7] 5|1, then three numbers are used where only two are needed. And fractional-period temperaments, e.g. Srutal [10] 6|2(2), use four numbers where only two are needed. | ||
Also, when comparing different MOS's of a temperament, with Mode Numbers notation but not with UDP, the Nth mode of the smaller MOS is always a subset of the Nth mode of the larger MOS. For example, Meantone [5] is generated by 3/2, not 4/3 as with UDP. Because Meantone [5] and Meantone [7] have the same generator, C 2nd Meantone [5] = C D F G A C is a subset of C 2nd Meantone [7] = C D E F G A B C. But using UDP, C Meantone 3|1 = C Eb F G Bb C isn't a subset of C Meantone 5|1 = C D E F G A B C. | Also, when comparing different MOS's of a temperament, with Mode Numbers notation but not with UDP, the Nth mode of the smaller MOS is always a subset of the Nth mode of the larger MOS. For example, Meantone [5] is generated by 3/2, not 4/3 as with UDP. Because Meantone [5] and Meantone [7] have the same generator, C 2nd Meantone [5] = C D F G A C is a subset of C 2nd Meantone [7] = C D E F G A B C. But using UDP, C Meantone 3|1 = C Eb F G Bb C isn't a subset of C Meantone 5|1 = C D E F G A B C. | ||
Line 624: | Line 624: | ||
<br /> | <br /> | ||
The octave inverse of a generator is also a generator. To avoid ambiguity in mode numbers, the smaller of the two generators is chosen. An exception is made for 3/2, which is preferred over 4/3 for historical reasons (see below). <strong><u>Unlike modal UDP notation, the generator isn't always chroma-positive</u>.</strong> There are several disadvantages of only using chroma-positive generators, see the critique of UDP at the bottom of this page.<br /> | The octave inverse of a generator is also a generator. To avoid ambiguity in mode numbers, the smaller of the two generators is chosen. An exception is made for 3/2, which is preferred over 4/3 for historical reasons (see below in &quot;Explanation&quot;). <strong><u>Unlike modal UDP notation, the generator isn't always chroma-positive</u>.</strong> There are several disadvantages of only using chroma-positive generators, see the critique of UDP at the bottom of this page.<br /> | ||
<br /> | <br /> | ||
Pentatonic meantone scales:<br /> | Pentatonic meantone scales:<br /> | ||
Line 1,690: | Line 1,690: | ||
If the scale is written using heptatonically using 7 note names, the degree numbers are heptatonic. C D E G A# is written 1st Meantone [5] #6. If the scale were written pentatonically using 5 note names, perhaps J K L M #N, it would be 1st Meantone [5] #5. If discussing scales in the abstract without reference to any note names, one need to specify which type of numbering is bering used.<br /> | If the scale is written using heptatonically using 7 note names, the degree numbers are heptatonic. C D E G A# is written 1st Meantone [5] #6. If the scale were written pentatonically using 5 note names, perhaps J K L M #N, it would be 1st Meantone [5] #5. If discussing scales in the abstract without reference to any note names, one need to specify which type of numbering is bering used.<br /> | ||
<br /> | <br /> | ||
The scale of 8\13 fifths A C B D F E G A mentioned above can't be notated with fifth-based heptatonic and requires pentatonic notation. Because the pentatonic fifth is chroma-negative, the fifthward side of the genchain is flat and the fourthwards side is sharp (assuming a fifth &lt; 720¢). Use &quot;+&quot; for fifthwards and &quot;-&quot; for fourthwards. <br /> | The scale of 8\13 fifths A C B D F E G A mentioned above can't be notated with fifth-based heptatonic and requires pentatonic notation. Because the pentatonic fifth is chroma-negative, the fifthward side of the genchain is flat and the fourthwards side is sharp (assuming a fifth &lt; 720¢). Use &quot;+&quot; for fifthwards and &quot;-&quot; for fourthwards.<br /> | ||
<br /> | <br /> | ||
Using J K L M N for note names, and arbitrarily centering the genchain on L, we get this genchain:<br /> | Using J K L M N for note names, and arbitrarily centering the genchain on L, we get this genchain:<br /> | ||
Line 1,954: | Line 1,954: | ||
An even larger problem is that the notation is overly tuning-dependent. Meantone [12] generated by 701¢ has a different genchain than Meantone [12] generated by 699¢, so slight differences in tempering result in different mode names. One might address this problem by reasonably constraining meantone's fifth to be less than 700¢. Likewise one could constrain Superpyth [12]'s fifth to be more than 700¢. But this approach fails with Dominant meantone, which tempers out both 81/80 and 64/63, and in which the fifth can reasonably be either more or less than 700¢. This makes every single UDP mode of Dominant [12] ambiguous. For example &quot;Dominant 8|3&quot; could mean either &quot;4th Dominant [12]&quot; or &quot;9th Dominant [12]&quot;. Something similar happens with Meantone [19]. If the fifth is greater than 694¢ = 11\19, the generator is 3/2, but if less than 694¢, it's 4/3. This makes every UDP mode of Meantone [19] ambiguous. Another example is Dicot [7] when the neutral 3rd generator is greater or less than 2\7 = 343¢. Another example is Semaphore [5]'s generator of ~8/7 or ~7/6 if near 1\5 = 240¢. In general, this ambiguity arises whenever the generator of an N-note MOS ranges from slightly flat of any N-edo interval to slightly sharp of it.<br /> | An even larger problem is that the notation is overly tuning-dependent. Meantone [12] generated by 701¢ has a different genchain than Meantone [12] generated by 699¢, so slight differences in tempering result in different mode names. One might address this problem by reasonably constraining meantone's fifth to be less than 700¢. Likewise one could constrain Superpyth [12]'s fifth to be more than 700¢. But this approach fails with Dominant meantone, which tempers out both 81/80 and 64/63, and in which the fifth can reasonably be either more or less than 700¢. This makes every single UDP mode of Dominant [12] ambiguous. For example &quot;Dominant 8|3&quot; could mean either &quot;4th Dominant [12]&quot; or &quot;9th Dominant [12]&quot;. Something similar happens with Meantone [19]. If the fifth is greater than 694¢ = 11\19, the generator is 3/2, but if less than 694¢, it's 4/3. This makes every UDP mode of Meantone [19] ambiguous. Another example is Dicot [7] when the neutral 3rd generator is greater or less than 2\7 = 343¢. Another example is Semaphore [5]'s generator of ~8/7 or ~7/6 if near 1\5 = 240¢. In general, this ambiguity arises whenever the generator of an N-note MOS ranges from slightly flat of any N-edo interval to slightly sharp of it.<br /> | ||
<br /> | <br /> | ||
Three other problems with UDP are more issues of taste. The most important piece of information, the number of notes in the scale, is hidden by UDP notation. It must be calculated by adding together the up, down, and period numbers (and the period number is often omitted). For example, to determine that Meantone 5|1 is heptatonic, one must add the 5, the 1 and the omitted 1. If the number of notes is indicated with brackets, e.g. Meantone [7] 5|1, then three numbers are used where only two are needed. And fractional-period temperaments, e.g. | Three other problems with UDP are more issues of taste. The most important piece of information, the number of notes in the scale, is hidden by UDP notation. It must be calculated by adding together the up, down, and period numbers (and the period number is often omitted). For example, to determine that Meantone 5|1 is heptatonic, one must add the 5, the 1 and the omitted 1. If the number of notes is indicated with brackets, e.g. Meantone [7] 5|1, then three numbers are used where only two are needed. And fractional-period temperaments, e.g. Srutal [10] 6|2(2), use four numbers where only two are needed.<br /> | ||
<br /> | <br /> | ||
Also, when comparing different MOS's of a temperament, with Mode Numbers notation but not with UDP, the Nth mode of the smaller MOS is always a subset of the Nth mode of the larger MOS. For example, Meantone [5] is generated by 3/2, not 4/3 as with UDP. Because Meantone [5] and Meantone [7] have the same generator, C 2nd Meantone [5] = C D F G A C is a subset of C 2nd Meantone [7] = C D E F G A B C. But using UDP, C Meantone 3|1 = C Eb F G Bb C isn't a subset of C Meantone 5|1 = C D E F G A B C.<br /> | Also, when comparing different MOS's of a temperament, with Mode Numbers notation but not with UDP, the Nth mode of the smaller MOS is always a subset of the Nth mode of the larger MOS. For example, Meantone [5] is generated by 3/2, not 4/3 as with UDP. Because Meantone [5] and Meantone [7] have the same generator, C 2nd Meantone [5] = C D F G A C is a subset of C 2nd Meantone [7] = C D E F G A B C. But using UDP, C Meantone 3|1 = C Eb F G Bb C isn't a subset of C Meantone 5|1 = C D E F G A B C.<br /> | ||
<br /> | <br /> | ||
Furthermore, UDP uses the more mathematical <a class="wiki_link_ext" href="https://en.wikipedia.org/wiki/Zero-based_numbering" rel="nofollow">zero-based counting</a> and Mode Numbers notation uses the more intuitive one-based counting. UDP is mathematician-oriented whereas Mode Numbers notation is musician-oriented.</body></html></pre></div> | Furthermore, UDP uses the more mathematical <a class="wiki_link_ext" href="https://en.wikipedia.org/wiki/Zero-based_numbering" rel="nofollow">zero-based counting</a> and Mode Numbers notation uses the more intuitive one-based counting. UDP is mathematician-oriented whereas Mode Numbers notation is musician-oriented.</body></html></pre></div> |