Kite's Genchain mode numbering: Difference between revisions
Wikispaces>TallKite **Imported revision 593234084 - Original comment: ** |
Wikispaces>TallKite **Imported revision 593234434 - Original comment: ** |
||
Line 1: | Line 1: | ||
<h2>IMPORTED REVISION FROM WIKISPACES</h2> | <h2>IMPORTED REVISION FROM WIKISPACES</h2> | ||
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | ||
: This revision was by author [[User:TallKite|TallKite]] and made on <tt>2016-09-25 08: | : This revision was by author [[User:TallKite|TallKite]] and made on <tt>2016-09-25 08:24:56 UTC</tt>.<br> | ||
: The original revision id was <tt> | : The original revision id was <tt>593234434</tt>.<br> | ||
: The revision comment was: <tt></tt><br> | : The revision comment was: <tt></tt><br> | ||
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | ||
Line 233: | Line 233: | ||
A ------ C#v | A ------ C#v | ||
In color notation, the comma is 256/243 = sw2, the generator is ~5/4 = Ty3, and the color name is 5-EDO+y. | |||
wF ------ yA | wF ------ yA | ||
wC ------ yE | wC ------ yE | ||
Line 381: | Line 381: | ||
Dx Ax Ex || | Dx Ax Ex || | ||
A larger problem is that choosing the chroma-positive generator only applies to MOS and MODMOS scales, and breaks down when the length of the genchain results in a non-MOS scale. Mode Numbers notation can be applied to scales like Meantone[8], which while not a MOS, is certainly musically useful. | A larger problem is that choosing the chroma-positive generator only applies to MOS and MODMOS scales, and breaks down when the length of the genchain results in a non-MOS scale. Mode Numbers notation can be applied to scales like Meantone [8], which while not a MOS, is certainly musically useful. | ||
|| scale || UDP genchain || Mode Numbers genchain || | || scale || UDP genchain || Mode Numbers genchain || | ||
|| Meantone [2] || C G || C G || | || Meantone [2] || C G || C G || | ||
Line 396: | Line 396: | ||
||< Meantone [12] if generator > 700¢ || C G D A E B F# C# G# D# A# E# ||= C G D A E B F# C# G# D# A# E# || | ||< Meantone [12] if generator > 700¢ || C G D A E B F# C# G# D# A# E# ||= C G D A E B F# C# G# D# A# E# || | ||
An even larger problem is that the notation is overly tuning-dependent. Meantone [12] generated by 701¢ has a different genchain than Meantone [12] generated by 699¢, so slight differences in tempering result in different mode names. One might address this problem by reasonably constraining meantone's fifth to be less than 700¢. Likewise one could constrain Superpyth [12]'s fifth to be more than 700¢. But this approach fails with Dominant meantone, which tempers out both 81/80 and 64/63, and in which the fifth can reasonably be either more or less than 700¢. This makes every single UDP mode of Dominant [12] ambiguous. For example "Dominant 8|3" could mean either "4th Dominant [12]" or "9th Dominant [12]". Something similar happens with Meantone [19]. If the fifth is greater than 694¢ = 11\19, the generator is 3/2, but if less than 694¢, it's 4/3. This makes every UDP mode of Meantone [19] ambiguous. Another example is Dicot [7] when the neutral 3rd generator is greater or less than 2\7 = 343¢. Another example is Semaphore [5]'s generator of ~8/7 or ~7/6 if near 1\5 = 240¢. In general, this ambiguity arises whenever the generator of an N-note MOS ranges from slightly flat of any N-edo interval to slightly sharp of it. | An even larger problem is that the notation is overly tuning-dependent. Meantone [12] generated by 701¢ has a different genchain than Meantone [12] generated by 699¢, so slight differences in tempering result in different mode names. One might address this problem by reasonably constraining meantone's fifth to be less than 700¢. Likewise one could constrain Superpyth [12]'s fifth to be more than 700¢. But this approach fails with Dominant meantone, which tempers out both 81/80 and 64/63, and in which the fifth can reasonably be either more or less than 700¢. This makes every single UDP mode of Dominant [12] ambiguous. For example "Dominant 8|3" could mean either "4th Dominant [12]" or "9th Dominant [12]". Something similar happens with Meantone [19]. If the fifth is greater than 694¢ = 11\19, the generator is 3/2, but if less than 694¢, it's 4/3. This makes every UDP mode of Meantone [19] ambiguous. Another example is Dicot [7] or Mohajira [7] when the neutral 3rd generator is greater or less than 2\7 = 343¢. Another example is Semaphore [5]'s generator of ~8/7 or ~7/6 if near 1\5 = 240¢. In general, this ambiguity arises whenever the generator of an N-note MOS ranges from slightly flat of any N-edo interval to slightly sharp of it. | ||
Three other problems with UDP are more issues of taste. The most important piece of information, the number of notes in the scale, is hidden by UDP notation. It must be calculated by adding together the up, down, and period numbers (and the period number is often omitted). For example, to determine that Meantone 5|1 is heptatonic, one must add the 5, the 1 and the omitted 1. If the number of notes is indicated with brackets, e.g. Meantone [7] 5|1, then three numbers are used where only two are needed. And fractional-period temperaments, e.g. Srutal [10] 6|2(2), use four numbers where only two are needed. | Three other problems with UDP are more issues of taste. The most important piece of information, the number of notes in the scale, is hidden by UDP notation. It must be calculated by adding together the up, down, and period numbers (and the period number is often omitted). For example, to determine that Meantone 5|1 is heptatonic, one must add the 5, the 1 and the omitted 1. If the number of notes is indicated with brackets, e.g. Meantone [7] 5|1, then three numbers are used where only two are needed. And fractional-period temperaments, e.g. Srutal [10] 6|2(2), use four numbers where only two are needed. | ||
Line 1,390: | Line 1,390: | ||
A ------ C#v<br /> | A ------ C#v<br /> | ||
<br /> | <br /> | ||
In color notation, the comma is 256/243 = sw2, the generator is ~5/4 = Ty3, and the color name is 5-EDO+y.<br /> | |||
wF ------ yA<br /> | wF ------ yA<br /> | ||
wC ------ yE<br /> | wC ------ yE<br /> | ||
Line 1,841: | Line 1,841: | ||
<br /> | <br /> | ||
A larger problem is that choosing the chroma-positive generator only applies to MOS and MODMOS scales, and breaks down when the length of the genchain results in a non-MOS scale. Mode Numbers notation can be applied to scales like Meantone[8], which while not a MOS, is certainly musically useful.<br /> | A larger problem is that choosing the chroma-positive generator only applies to MOS and MODMOS scales, and breaks down when the length of the genchain results in a non-MOS scale. Mode Numbers notation can be applied to scales like Meantone [8], which while not a MOS, is certainly musically useful.<br /> | ||
Line 1,952: | Line 1,952: | ||
<br /> | <br /> | ||
An even larger problem is that the notation is overly tuning-dependent. Meantone [12] generated by 701¢ has a different genchain than Meantone [12] generated by 699¢, so slight differences in tempering result in different mode names. One might address this problem by reasonably constraining meantone's fifth to be less than 700¢. Likewise one could constrain Superpyth [12]'s fifth to be more than 700¢. But this approach fails with Dominant meantone, which tempers out both 81/80 and 64/63, and in which the fifth can reasonably be either more or less than 700¢. This makes every single UDP mode of Dominant [12] ambiguous. For example &quot;Dominant 8|3&quot; could mean either &quot;4th Dominant [12]&quot; or &quot;9th Dominant [12]&quot;. Something similar happens with Meantone [19]. If the fifth is greater than 694¢ = 11\19, the generator is 3/2, but if less than 694¢, it's 4/3. This makes every UDP mode of Meantone [19] ambiguous. Another example is Dicot [7] when the neutral 3rd generator is greater or less than 2\7 = 343¢. Another example is Semaphore [5]'s generator of ~8/7 or ~7/6 if near 1\5 = 240¢. In general, this ambiguity arises whenever the generator of an N-note MOS ranges from slightly flat of any N-edo interval to slightly sharp of it.<br /> | An even larger problem is that the notation is overly tuning-dependent. Meantone [12] generated by 701¢ has a different genchain than Meantone [12] generated by 699¢, so slight differences in tempering result in different mode names. One might address this problem by reasonably constraining meantone's fifth to be less than 700¢. Likewise one could constrain Superpyth [12]'s fifth to be more than 700¢. But this approach fails with Dominant meantone, which tempers out both 81/80 and 64/63, and in which the fifth can reasonably be either more or less than 700¢. This makes every single UDP mode of Dominant [12] ambiguous. For example &quot;Dominant 8|3&quot; could mean either &quot;4th Dominant [12]&quot; or &quot;9th Dominant [12]&quot;. Something similar happens with Meantone [19]. If the fifth is greater than 694¢ = 11\19, the generator is 3/2, but if less than 694¢, it's 4/3. This makes every UDP mode of Meantone [19] ambiguous. Another example is Dicot [7] or Mohajira [7] when the neutral 3rd generator is greater or less than 2\7 = 343¢. Another example is Semaphore [5]'s generator of ~8/7 or ~7/6 if near 1\5 = 240¢. In general, this ambiguity arises whenever the generator of an N-note MOS ranges from slightly flat of any N-edo interval to slightly sharp of it.<br /> | ||
<br /> | <br /> | ||
Three other problems with UDP are more issues of taste. The most important piece of information, the number of notes in the scale, is hidden by UDP notation. It must be calculated by adding together the up, down, and period numbers (and the period number is often omitted). For example, to determine that Meantone 5|1 is heptatonic, one must add the 5, the 1 and the omitted 1. If the number of notes is indicated with brackets, e.g. Meantone [7] 5|1, then three numbers are used where only two are needed. And fractional-period temperaments, e.g. Srutal [10] 6|2(2), use four numbers where only two are needed.<br /> | Three other problems with UDP are more issues of taste. The most important piece of information, the number of notes in the scale, is hidden by UDP notation. It must be calculated by adding together the up, down, and period numbers (and the period number is often omitted). For example, to determine that Meantone 5|1 is heptatonic, one must add the 5, the 1 and the omitted 1. If the number of notes is indicated with brackets, e.g. Meantone [7] 5|1, then three numbers are used where only two are needed. And fractional-period temperaments, e.g. Srutal [10] 6|2(2), use four numbers where only two are needed.<br /> |