Comparison of mode notation systems: Difference between revisions

Wikispaces>TallKite
**Imported revision 581103561 - Original comment: **
Wikispaces>TallKite
**Imported revision 581105869 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:TallKite|TallKite]] and made on <tt>2016-04-25 07:22:29 UTC</tt>.<br>
: This revision was by author [[User:TallKite|TallKite]] and made on <tt>2016-04-25 07:58:35 UTC</tt>.<br>
: The original revision id was <tt>581103561</tt>.<br>
: The original revision id was <tt>581105869</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
Line 14: Line 14:
**Mode numbers** provide a way to name MOS, MODMOS and even non-MOS rank-2 scales and modes systematically. Like [[xenharmonic/Modal UDP notation|Modal UDP notation]], it starts with the convention of using //some-temperament-name//[//some-number//] to create a generator-chain, and adds a way to number each mode uniquely. For example, here are all the modes of Meantone[7], using ~3/2 as the generator:
**Mode numbers** provide a way to name MOS, MODMOS and even non-MOS rank-2 scales and modes systematically. Like [[xenharmonic/Modal UDP notation|Modal UDP notation]], it starts with the convention of using //some-temperament-name//[//some-number//] to create a generator-chain, and adds a way to number each mode uniquely. For example, here are all the modes of Meantone[7], using ~3/2 as the generator:
|| old scale name || new scale name || Ls pattern || example on white keys || genchain ||
|| old scale name || new scale name || Ls pattern || example on white keys || genchain ||
|| Lydian || 1st Meantone[7] || LLLs LLs || F G A B C D E F || __**F**__ C G D A E B ||
|| Lydian || 1st Meantone [7] || LLLs LLs || F G A B C D E F || __**F**__ C G D A E B ||
|| Ionian (major) || 2nd Meantone[7] || LLsL LLs || C D E F G A B C || F __**C**__ G D A E B ||
|| Ionian (major) || 2nd Meantone [7] || LLsL LLs || C D E F G A B C || F __**C**__ G D A E B ||
|| Mixolydian || 3rd Meantone[7] || LLsL LsL || G A B C D E F G || F C __**G**__ D A E B ||
|| Mixolydian || 3rd Meantone [7] || LLsL LsL || G A B C D E F G || F C __**G**__ D A E B ||
|| Dorian || 4th Meantone[7] || LsLL LsL || D E F G A B C D || F C G __**D**__ A E B ||
|| Dorian || 4th Meantone [7] || LsLL LsL || D E F G A B C D || F C G __**D**__ A E B ||
|| Aeolian (minor) || 5th Meantone[7] || LsLL sLL || A B C D E F G A || F C G D __**A**__ E B ||
|| Aeolian (minor) || 5th Meantone [7] || LsLL sLL || A B C D E F G A || F C G D __**A**__ E B ||
|| Phrygian || 6th Meantone[7] || sLLL sLL || E F G A B C D E || F C G D A __**E**__ B ||
|| Phrygian || 6th Meantone [7] || sLLL sLL || E F G A B C D E || F C G D A __**E**__ B ||
|| Locrian || 7th Meantone[7] || sLLs LLL || B C D E F G A B || F C G D A E __**B**__ ||
|| Locrian || 7th Meantone [7] || sLLs LLL || B C D E F G A B || F C G D A E __**B**__ ||


These [[MOSScales|MOS scales]] are formed from a segment of the [[periods and generators|generator-chain]], or genchain. The first note in the genchain is the tonic of the 1st mode, the 2nd note is the tonic of the 2nd mode, etc., somewhat analogous to harmonica positions. 4th Meantone[7] is spoken as "fourth meantone heptatonic", or possibly "fourth meantone seven". If in D, as above, it would be "D fourth meantone heptatonic".
These [[MOSScales|MOS scales]] are formed from a segment of the [[periods and generators|generator-chain]], or genchain. The first note in the genchain is the tonic of the 1st mode, the 2nd note is the tonic of the 2nd mode, etc., somewhat analogous to harmonica positions. 4th Meantone [7] is spoken as "fourth meantone heptatonic", or possibly "fourth meantone seven". If in D, as above, it would be "D fourth meantone heptatonic".


The same seven modes, all with C as the tonic, to illustrate the difference between modes. Adjacent modes differ by only one note. The modes proceed from sharper (Lydian) to flatter (Locrian).
The same seven modes, all with C as the tonic, to illustrate the difference between modes. Adjacent modes differ by only one note. The modes proceed from sharper (Lydian) to flatter (Locrian).
|| old scale name || new scale name || Ls pattern || example in C || ------------------- genchain --------------- ||
|| old scale name || new scale name || Ls pattern || example in C || ------------------- genchain --------------- ||
|| Lydian || 1st Meantone[7] || LLLs LLs || C D E F# G A B C ||&gt; __**C**__ G D A E B F# ||
|| Lydian || 1st Meantone [7] || LLLs LLs || C D E F# G A B C ||&gt; __**C**__ G D A E B F# ||
|| Ionian (major) || 2nd Meantone[7] || LLsL LLs || C D E F G A B C ||&gt; F __**C**__ G D A E B ---- ||
|| Ionian (major) || 2nd Meantone [7] || LLsL LLs || C D E F G A B C ||&gt; F __**C**__ G D A E B ---- ||
|| Mixolydian || 3rd Meantone[7] || LLsL LsL || C D E F G A Bb C ||&gt; Bb F __**C**__ G D A E ------- ||
|| Mixolydian || 3rd Meantone [7] || LLsL LsL || C D E F G A Bb C ||&gt; Bb F __**C**__ G D A E ------- ||
|| Dorian || 4th Meantone[7] || LsLL LsL || C D Eb F G A Bb C || ------------- Eb Bb F __**C**__ G D A ||
|| Dorian || 4th Meantone [7] || LsLL LsL || C D Eb F G A Bb C || ------------- Eb Bb F __**C**__ G D A ||
|| Aeolian (minor) || 5th Meantone[7] || LsLL sLL || C D Eb F G Ab Bb C || --------- Ab Eb Bb F __**C**__ G D ||
|| Aeolian (minor) || 5th Meantone [7] || LsLL sLL || C D Eb F G Ab Bb C || --------- Ab Eb Bb F __**C**__ G D ||
|| Phrygian || 6th Meantone[7] || sLLL sLL || C Db Eb F G Ab Bb C || ---- Db Ab Eb Bb F __**C**__ G ||
|| Phrygian || 6th Meantone [7] || sLLL sLL || C Db Eb F G Ab Bb C || ---- Db Ab Eb Bb F __**C**__ G ||
|| Locrian || 7th Meantone[7] || sLLs LLL || C Db Eb F Gb Ab Bb C || Gb Db Ab Eb Bb F __**C**__ ||
|| Locrian || 7th Meantone [7] || sLLs LLL || C Db Eb F Gb Ab Bb C || Gb Db Ab Eb Bb F __**C**__ ||


The octave inverse of a generator is also a generator. To avoid ambiguity in mode numbers, the smaller of the two generators is chosen. An exception is made for 3/2, which is preferred over 4/3 for historical reasons. **Unlike modal UDP notation, the generator isn't always chroma-positive.** This is necessary to keep the same generator for different MOS's of the same [[Regular Temperaments|temperament]], which guarantees that the smaller MOS will always be a subset of the larger MOS.
The octave inverse of a generator is also a generator. To avoid ambiguity in mode numbers, the smaller of the two generators is chosen. An exception is made for 3/2, which is preferred over 4/3 for historical reasons. **Unlike modal UDP notation, the generator isn't always chroma-positive.** This is necessary to keep the same generator for different MOS's of the same [[Regular Temperaments|temperament]], which guarantees that the smaller MOS will always be a subset of the larger MOS.


For example, Meantone[5] is generated by 3/2, not 4/3. Because the generator is chroma-negative, the modes proceed from flatter to sharper. Because Meantone[5] and Meantone[7]have the same generator, C 2nd Meantone[5] = CDFGAC is a subset of C 2nd Meantone[7] = CDEFGABC.
For example, Meantone [5] is generated by 3/2, not 4/3. Because the generator is chroma-negative, the modes proceed from flatter to sharper. Because Meantone [5] and Meantone [7]have the same generator, C 2nd Meantone [5] = CDFGAC is a subset of C 2nd Meantone [7] = CDEFGABC.


Pentatonic meantone scales:
Pentatonic meantone scales:
|| old scale name || new scale name || Ls pattern || example in C || --------- genchain ------- ||
|| old scale name || new scale name || Ls pattern || example in C || --------- genchain ------- ||
|| major pentatonic || 1st Meantone[5] || ssL sL || C D E G A C ||&gt; __**C**__ G D A E ||
|| major pentatonic || 1st Meantone [5] || ssL sL || C D E G A C ||&gt; __**C**__ G D A E ||
||=  || 2nd Meantone[5] || sLs sL || C D F G A C ||&gt; F __**C**__ G D A -- ||
||=  || 2nd Meantone [5] || sLs sL || C D F G A C ||&gt; F __**C**__ G D A -- ||
||=  || 3rd Meantone[5] || sLs Ls || C D F G Bb C || -------- Bb F __**C**__ G D ||
||=  || 3rd Meantone [5] || sLs Ls || C D F G Bb C || -------- Bb F __**C**__ G D ||
|| minor pentatonic || 4th Meantone[5] || Lss Ls || C Eb F G Bb C || ---- Eb Bb F __**C**__ G ||
|| minor pentatonic || 4th Meantone [5] || Lss Ls || C Eb F G Bb C || ---- Eb Bb F __**C**__ G ||
||=  || 5th Meantone[5] || LsL ss || C Eb F Ab Bb C || Ab Eb Bb F __**C**__ ||
||=  || 5th Meantone [5] || LsL ss || C Eb F Ab Bb C || Ab Eb Bb F __**C**__ ||


Chromatic meantone scales. If the fifth were larger than 700¢, which would be the case for Superpyth[12], L and s would be interchanged.
Chromatic meantone scales. If the fifth were larger than 700¢, which would be the case for Superpyth[12], L and s would be interchanged.
|| scale name || Ls pattern || example in C || genchain ||
|| scale name || Ls pattern || example in C || genchain ||
|| 1st Meantone[12] || sLsLsLL sLsLL || C C# D D# E E# F# G G# A A# B C || __**C**__ G D A E B F# C# G# D# A# E# ||
|| 1st Meantone [12] || sLsLsLL sLsLL || C C# D D# E E# F# G G# A A# B C || __**C**__ G D A E B F# C# G# D# A# E# ||
|| 2nd Meantone[12] || sLsLLsL sLsLL || C C# D D# E F F# G G# A A# B C || F __**C**__ G D A E B F# C# G# D# A# ||
|| 2nd Meantone [12] || sLsLLsL sLsLL || C C# D D# E F F# G G# A A# B C || F __**C**__ G D A E B F# C# G# D# A# ||
|| 3rd Meantone[12] || sLsLLsL sLLsL || C C# D D# E F F# G G# A Bb B C || Bb F __**C**__ G D A E B F# C# G# D# ||
|| 3rd Meantone [12] || sLsLLsL sLLsL || C C# D D# E F F# G G# A Bb B C || Bb F __**C**__ G D A E B F# C# G# D# ||
|| 4th Meantone[12] || sLLsLsL sLLsL || C C# D Eb E F F# G G# A Bb B C || Eb Bb F __**C**__ G D A E B F# C# G# ||
|| 4th Meantone [12] || sLLsLsL sLLsL || C C# D Eb E F F# G G# A Bb B C || Eb Bb F __**C**__ G D A E B F# C# G# ||
|| 5th Meantone[12] || sLLsLsL LsLsL || C C# D Eb E F F# G Ab A Bb B C || Ab Eb Bb F __**C**__ G D A E B F# C# ||
|| 5th Meantone [12] || sLLsLsL LsLsL || C C# D Eb E F F# G Ab A Bb B C || Ab Eb Bb F __**C**__ G D A E B F# C# ||
|| 6th Meantone[12] || LsLsLsL LsLsL || C Db D Eb E F F# G Ab A Bb B C || Db Ab Eb Bb F __**C**__ G D A E B F# ||
|| 6th Meantone [12] || LsLsLsL LsLsL || C Db D Eb E F F# G Ab A Bb B C || Db Ab Eb Bb F __**C**__ G D A E B F# ||
|| 7th Meantone[12] || LsLsLLs LsLsL || C Db D Eb E F Gb G Ab A Bb B C || Gb Db Ab Eb Bb F __**C**__ G D A E B ||
|| 7th Meantone [12] || LsLsLLs LsLsL || C Db D Eb E F Gb G Ab A Bb B C || Gb Db Ab Eb Bb F __**C**__ G D A E B ||
||= etc. ||  ||  ||  ||
||= etc. ||  ||  ||  ||


[[Sensi]][8] modes in 19edo (generator = 3rd = ~9/7 = 7\19, L = 3\19, s = 2\19)
[[Sensi]] [8] modes in 19edo (generator = 3rd = ~9/7 = 7\19, L = 3\19, s = 2\19)
|| scale name || Ls pattern || example in C || genchain ||
|| scale name || Ls pattern || example in C || genchain ||
|| 1st Sensi[8] || ssL ssL sL || C Db D# E# F# G A Bb C || __**C**__ E# A Db F# Bb D# G ||
|| 1st Sensi [8] || ssL ssL sL || C Db D# E# F# G A Bb C || __**C**__ E# A Db F# Bb D# G ||
|| 2nd Sensi[8] || ssL sL ssL || C Db D# E# F# G# A Bb C || G# __**C**__ E# A Db F# Bb D# ||
|| 2nd Sensi [8] || ssL sL ssL || C Db D# E# F# G# A Bb C || G# __**C**__ E# A Db F# Bb D# ||
|| 3rd Sensi[8] || sL ssL ssL || C Db Eb E# F# G# A Bb C || Eb G# __**C**__ E# A Db F# Bb ||
|| 3rd Sensi [8] || sL ssL ssL || C Db Eb E# F# G# A Bb C || Eb G# __**C**__ E# A Db F# Bb ||
|| 4th Sensi[8] || sL ssL sL s || C Db Eb E# F# G# A B C || B Eb G# __**C**__ E# A Db F# ||
|| 4th Sensi [8] || sL ssL sL s || C Db Eb E# F# G# A B C || B Eb G# __**C**__ E# A Db F# ||
|| 5th Sensi[8] || sL sL ssL s || C Db Eb E# Gb G# A B C || Gb B Eb G# __**C**__ E# A Db ||
|| 5th Sensi [8] || sL sL ssL s || C Db Eb E# Gb G# A B C || Gb B Eb G# __**C**__ E# A Db ||
|| 6th Sensi[8] || Lss Lss Ls || C D Eb E# Gb G# A B C || D Gb B Eb G# __**C**__ E# A ||
|| 6th Sensi [8] || Lss Lss Ls || C D Eb E# Gb G# A B C || D Gb B Eb G# __**C**__ E# A ||
|| 7th Sensi[8] || Lss Ls Lss || C D Eb E# Gb G# A# B C || A# D Gb B Eb G# __**C**__ E# ||
|| 7th Sensi [8] || Lss Ls Lss || C D Eb E# Gb G# A# B C || A# D Gb B Eb G# __**C**__ E# ||
|| 8th Sensi[8] || Ls Lss Lss || C D Eb F Gb G# A# B C || F A# D Gb B Eb G# __**C**__ ||
|| 8th Sensi [8] || Ls Lss Lss || C D Eb F Gb G# A# B C || F A# D Gb B Eb G# __**C**__ ||


Porcupine[7] modes in 22edo (generator = 2nd = ~10/9 = 3\22, L = 4\22, s = 3\22), using [[xenharmonic/ups and downs notation|ups and downs notation]].
Porcupine [7] modes in 22edo (generator = 2nd = ~10/9 = 3\22, L = 4\22, s = 3\22), using [[xenharmonic/ups and downs notation|ups and downs notation]].
Because the generator is a 2nd, the genchain looks like the scale.
Because the generator is a 2nd, the genchain resembles the scale.
|| scale name || Ls pattern || example in C || genchain ||
|| scale name || Ls pattern || example in C || genchain ||
|| 1st Porcupine[7] || ssss ssL || C Dv Eb^ F Gv Ab^ Bb C || __**C**__ Dv Eb^ F Gv Ab^ Bb ||
|| 1st Porcupine [7] || ssss ssL || C Dv Eb^ F Gv Ab^ Bb C || __**C**__ Dv Eb^ F Gv Ab^ Bb ||
|| 2nd Porcupine[7] || ssss sLs || C Dv Eb^ F Gv Ab^ Bb^ C || Bb^ __**C**__ Dv Eb^ F Gv Ab^ ||
|| 2nd Porcupine [7] || ssss sLs || C Dv Eb^ F Gv Ab^ Bb^ C || Bb^ __**C**__ Dv Eb^ F Gv Ab^ ||
|| 3rd Porcupine[7] || ssss Lss || C Dv Eb^ F Gv Av Bb^ C || Av Bb^ __**C**__ Dv Eb^ F Gv ||
|| 3rd Porcupine [7] || ssss Lss || C Dv Eb^ F Gv Av Bb^ C || Av Bb^ __**C**__ Dv Eb^ F Gv ||
|| 4th Porcupine[7] || sssL sss || C Dv Eb^ F G Av Bb^ C || G Av Bb^ __**C**__ Dv Eb^ F ||
|| 4th Porcupine [7] || sssL sss || C Dv Eb^ F G Av Bb^ C || G Av Bb^ __**C**__ Dv Eb^ F ||
|| 5th Porcupine[7] || ssLs sss || C Dv Eb^ F^ G Av Bb^ C ||= F^ G Av Bb^ __**C**__ Dv Eb^ ||
|| 5th Porcupine [7] || ssLs sss || C Dv Eb^ F^ G Av Bb^ C ||= F^ G Av Bb^ __**C**__ Dv Eb^ ||
|| 6th Porcupine[7] || sLss sss || C Dv Ev F^ G Av Bb^ C || Ev F^ G Av Bb^ __**C**__ Dv ||
|| 6th Porcupine [7] || sLss sss || C Dv Ev F^ G Av Bb^ C || Ev F^ G Av Bb^ __**C**__ Dv ||
|| 7th Porcupine[7] || Lsss sss || C D Ev F^ G Av Bb^ C || D Ev F^ G Av Bb^ __**C**__ ||
|| 7th Porcupine [7] || Lsss sss || C D Ev F^ G Av Bb^ C || D Ev F^ G Av Bb^ __**C**__ ||




Line 83: Line 83:
To find a [[MODMOS Scales|MODMOS]] scale's name, start with the genchain for the scale, which will always have gaps. Compact it into a chain without gaps by altering one or more notes. If there is more than one way to do this, the way that alters as few notes as possible is generally preferable. Determine the mode number from the __compacted__ genchain. //[This may change]// For example, for harmonic minor, A is the 4th note of the uncompacted genchain, but the 5th note of the compacted one. This is so that two notes an aug or dim fifth apart will have adjacent mode numbers. Just like A and E are adjacent, Ab and E are too. In other words, determining the mode number from the scale degree remains fifth-based.
To find a [[MODMOS Scales|MODMOS]] scale's name, start with the genchain for the scale, which will always have gaps. Compact it into a chain without gaps by altering one or more notes. If there is more than one way to do this, the way that alters as few notes as possible is generally preferable. Determine the mode number from the __compacted__ genchain. //[This may change]// For example, for harmonic minor, A is the 4th note of the uncompacted genchain, but the 5th note of the compacted one. This is so that two notes an aug or dim fifth apart will have adjacent mode numbers. Just like A and E are adjacent, Ab and E are too. In other words, determining the mode number from the scale degree remains fifth-based.


Meantone[7,+3,-6] means that the 3rd note in the __compacted__ genchain is moved 7 steps to the right, and the 6th note is moved 7 steps to the left. The alterations are the exact opposite of the alterations needed to close the gaps in the uncompacted genchain. "+" and "-" are preferred over "#" and "b" because in the case of a chroma-negative generator, "+" makes the note flatter, as in the last example:
Meantone [7,+3,-6] means that the 3rd note in the __compacted__ genchain is moved 7 steps to the right, and the 6th note is moved 7 steps to the left. The alterations are the exact opposite of the alterations needed to close the gaps in the uncompacted genchain. "+" and "-" are preferred over "#" and "b" because in the case of a chroma-negative generator, "+" makes the note flatter, as in the last example:
|| old scale name || example in A || genchain || compacted genchain || new scale name ||
|| old scale name || example in A || genchain || compacted genchain || new scale name ||
|| Harmonic minor || A B C D E F G# A || F C * D __**A**__ E B * * G# || F C G D __**A**__ E B || 5th Meantone [7,+3] ||
|| Harmonic minor || A B C D E F G# A || F C * D __**A**__ E B * * G# || F C G D __**A**__ E B || 5th Meantone [7,+3] ||
Line 98: Line 98:
||= " ||= " ||= " || A# E# __**C**__ G D || 3rd Meantone [5,+2] ||
||= " ||= " ||= " || A# E# __**C**__ G D || 3rd Meantone [5,+2] ||


The ambiguity of MODMOS names can be resolved by devising a rule to determine the one proper compacted genchain. For example, choose the one that moves as few notes as possible, breaking ties with a bias towards moving to the right. The disadvantage of ambiguity is that it makes modes less apparent. If the double harmonic minor is 1st Meantone[7,-4,-5] and the double harmonic major is 6th Meantone[7,+3,+4], one can't tell that they are modes of each other. The advantage is that one can choose the mode number. If a piece changes from a MOS scale to a MODMOS scale, one can describe both scales with the same mode number. For example, a piece might change from minor = 5th Meantone[7] to melodic minor = 5th Meantone[7,+1,+3]. In this context, melodic minor is better described as an altered minor scale than an altered dorian scale.
The ambiguity of MODMOS names can be resolved by devising a rule to determine the one proper compacted genchain. For example, choose the one that moves as few notes as possible, breaking ties with a bias towards moving to the right.


Neighboring MODMOS modes no longer differ by only one note. But the sharp/flat progression is maintained. Harmonic minor modes:
The disadvantage of ambiguity is that it makes modes less apparent. If the double harmonic minor is called 1st Meantone [7,-4,-5] and the double harmonic major is 6th Meantone [7,+3,+4], one can't tell that they are modes of each other. The advantage is that one can choose the mode number. If a piece changes from a MOS scale to a MODMOS scale, one can describe both scales with the same mode number. For example, a piece might change from minor = 5th Meantone [7] to melodic minor = 5th Meantone [7,+1,+3]. In this context, melodic minor is better described as an altered minor scale than an altered dorian scale.
 
Unlike MOS scales, adjacent MODMOS modes differ by more than one note. Harmonic minor modes:
X X * X X X X * * X
1: C D# E F# G A B C
2: C D E F G# A B C
3: C Db Eb Fb Gb Ab Bbb C
4: C D Eb F# G A Bb C
5: C D Eb F G Ab B C
6: C Db E F G Ab Bb C
7: C Db Eb F Gb A Bb C
 
Melodic minor modes:
1: C D E F# G# A B C
1: C D E F# G# A B C
2: C D E F# G A Bb C
2: C Db Eb Fb Gb Ab Bb C
3: C D Eb F G A B C
3: C D E F# G A Bb C
4: C D E F G Ab Bb C
4: C D Eb F G A B C
5: C Db Eb F G A Bb C
5: C D E F G Ab Bb C
6: C D Eb F Gb Ab Bb C
6: C Db Eb F G A Bb C
7: C Db Eb Fb Gb Ab Bb C
7: C D Eb F Gb Ab Bb C
 




Line 123: Line 136:
In order to be a MOS scale, the parallel genchains must of course be the right length, and without any gaps. But they must also line up exactly, so that each note has a neighbor immediately above and/or below. In other words, every column of the genweb must be complete.
In order to be a MOS scale, the parallel genchains must of course be the right length, and without any gaps. But they must also line up exactly, so that each note has a neighbor immediately above and/or below. In other words, every column of the genweb must be complete.


If the period is a fraction of an octave, 3/2 is still preferred over 4/3, even though that makes the generator larger than the period. But shrutal's generator could be thought of as either 3/2 or 16/15, because 16/15 would still create the same mode numbers and thus the same scale names.
If the period is a fraction of an octave, 3/2 is still preferred over 4/3, even though that makes the generator larger than the period. A generator plus or minus a period is still a generator. Shrutal's generator could be thought of as either 3/2 or 16/15, because 16/15 would still create the same mode numbers and thus the same scale names.


All five Shrutal[10] modes:
All five Shrutal [10] modes:
|| scale name || Ls pattern || example in C || 1st genchain || 2nd genchain ||
|| scale name || Ls pattern || example in C || 1st genchain || 2nd genchain ||
|| 1st Shrutal[10] || ssssL-ssssL || C C# D D# E F# G G# A A# C || __**C**__ G D A E || F# C# G# D# A# ||
|| 1st Shrutal [10] || ssssL-ssssL || C C# D D# E F# G G# A A# C || __**C**__ G D A E || F# C# G# D# A# ||
|| 2nd Shrutal[10] || sssLs-sssLs || C C# D D# F F# G G# A B C || F __**C**__ G D A || B F# C# G# D# ||
|| 2nd Shrutal [10] || sssLs-sssLs || C C# D D# F F# G G# A B C || F __**C**__ G D A || B F# C# G# D# ||
|| 3rd Shrutal[10] || ssLss-ssLss || C C# D E F F# G G# Bb B C || Bb F __**C**__ G D || E B F# C# G# ||
|| 3rd Shrutal [10] || ssLss-ssLss || C C# D E F F# G G# Bb B C || Bb F __**C**__ G D || E B F# C# G# ||
|| 4th Shrutal[10] || sLsss-sLsss || C C# Eb E F F# G A Bb B C || Eb Bb F __**C**__ G || A E B F# C# ||
|| 4th Shrutal [10] || sLsss-sLsss || C C# Eb E F F# G A Bb B C || Eb Bb F __**C**__ G || A E B F# C# ||
|| 5th Shrutal[10] || Lssss-Lssss || C D Eb E F F# Ab A Bb B C || Ab Eb Bb F __**C**__ || D A E B F# ||
|| 5th Shrutal [10] || Lssss-Lssss || C D Eb E F F# Ab A Bb B C || Ab Eb Bb F __**C**__ || D A E B F# ||


The octotonic diminished scale has only two modes. The period is a quarter-octave = 300¢. The generator is ~3/2. There are four short genchains.
The octotonic diminished scale has only two modes. The period is a quarter-octave = 300¢. The generator is ~3/2. There are four short genchains.
Line 265: Line 278:
         &lt;td&gt;Lydian&lt;br /&gt;
         &lt;td&gt;Lydian&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;1st Meantone[7]&lt;br /&gt;
         &lt;td&gt;1st Meantone [7]&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;LLLs LLs&lt;br /&gt;
         &lt;td&gt;LLLs LLs&lt;br /&gt;
Line 277: Line 290:
         &lt;td&gt;Ionian (major)&lt;br /&gt;
         &lt;td&gt;Ionian (major)&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;2nd Meantone[7]&lt;br /&gt;
         &lt;td&gt;2nd Meantone [7]&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;LLsL LLs&lt;br /&gt;
         &lt;td&gt;LLsL LLs&lt;br /&gt;
Line 289: Line 302:
         &lt;td&gt;Mixolydian&lt;br /&gt;
         &lt;td&gt;Mixolydian&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;3rd Meantone[7]&lt;br /&gt;
         &lt;td&gt;3rd Meantone [7]&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;LLsL LsL&lt;br /&gt;
         &lt;td&gt;LLsL LsL&lt;br /&gt;
Line 301: Line 314:
         &lt;td&gt;Dorian&lt;br /&gt;
         &lt;td&gt;Dorian&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;4th Meantone[7]&lt;br /&gt;
         &lt;td&gt;4th Meantone [7]&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;LsLL LsL&lt;br /&gt;
         &lt;td&gt;LsLL LsL&lt;br /&gt;
Line 313: Line 326:
         &lt;td&gt;Aeolian (minor)&lt;br /&gt;
         &lt;td&gt;Aeolian (minor)&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;5th Meantone[7]&lt;br /&gt;
         &lt;td&gt;5th Meantone [7]&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;LsLL sLL&lt;br /&gt;
         &lt;td&gt;LsLL sLL&lt;br /&gt;
Line 325: Line 338:
         &lt;td&gt;Phrygian&lt;br /&gt;
         &lt;td&gt;Phrygian&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;6th Meantone[7]&lt;br /&gt;
         &lt;td&gt;6th Meantone [7]&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;sLLL sLL&lt;br /&gt;
         &lt;td&gt;sLLL sLL&lt;br /&gt;
Line 337: Line 350:
         &lt;td&gt;Locrian&lt;br /&gt;
         &lt;td&gt;Locrian&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;7th Meantone[7]&lt;br /&gt;
         &lt;td&gt;7th Meantone [7]&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;sLLs LLL&lt;br /&gt;
         &lt;td&gt;sLLs LLL&lt;br /&gt;
Line 349: Line 362:


&lt;br /&gt;
&lt;br /&gt;
These &lt;a class="wiki_link" href="/MOSScales"&gt;MOS scales&lt;/a&gt; are formed from a segment of the &lt;a class="wiki_link" href="/periods%20and%20generators"&gt;generator-chain&lt;/a&gt;, or genchain. The first note in the genchain is the tonic of the 1st mode, the 2nd note is the tonic of the 2nd mode, etc., somewhat analogous to harmonica positions. 4th Meantone[7] is spoken as &amp;quot;fourth meantone heptatonic&amp;quot;, or possibly &amp;quot;fourth meantone seven&amp;quot;. If in D, as above, it would be &amp;quot;D fourth meantone heptatonic&amp;quot;.&lt;br /&gt;
These &lt;a class="wiki_link" href="/MOSScales"&gt;MOS scales&lt;/a&gt; are formed from a segment of the &lt;a class="wiki_link" href="/periods%20and%20generators"&gt;generator-chain&lt;/a&gt;, or genchain. The first note in the genchain is the tonic of the 1st mode, the 2nd note is the tonic of the 2nd mode, etc., somewhat analogous to harmonica positions. 4th Meantone [7] is spoken as &amp;quot;fourth meantone heptatonic&amp;quot;, or possibly &amp;quot;fourth meantone seven&amp;quot;. If in D, as above, it would be &amp;quot;D fourth meantone heptatonic&amp;quot;.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
The same seven modes, all with C as the tonic, to illustrate the difference between modes. Adjacent modes differ by only one note. The modes proceed from sharper (Lydian) to flatter (Locrian).&lt;br /&gt;
The same seven modes, all with C as the tonic, to illustrate the difference between modes. Adjacent modes differ by only one note. The modes proceed from sharper (Lydian) to flatter (Locrian).&lt;br /&gt;
Line 370: Line 383:
         &lt;td&gt;Lydian&lt;br /&gt;
         &lt;td&gt;Lydian&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;1st Meantone[7]&lt;br /&gt;
         &lt;td&gt;1st Meantone [7]&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;LLLs LLs&lt;br /&gt;
         &lt;td&gt;LLLs LLs&lt;br /&gt;
Line 382: Line 395:
         &lt;td&gt;Ionian (major)&lt;br /&gt;
         &lt;td&gt;Ionian (major)&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;2nd Meantone[7]&lt;br /&gt;
         &lt;td&gt;2nd Meantone [7]&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;LLsL LLs&lt;br /&gt;
         &lt;td&gt;LLsL LLs&lt;br /&gt;
Line 394: Line 407:
         &lt;td&gt;Mixolydian&lt;br /&gt;
         &lt;td&gt;Mixolydian&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;3rd Meantone[7]&lt;br /&gt;
         &lt;td&gt;3rd Meantone [7]&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;LLsL LsL&lt;br /&gt;
         &lt;td&gt;LLsL LsL&lt;br /&gt;
Line 406: Line 419:
         &lt;td&gt;Dorian&lt;br /&gt;
         &lt;td&gt;Dorian&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;4th Meantone[7]&lt;br /&gt;
         &lt;td&gt;4th Meantone [7]&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;LsLL LsL&lt;br /&gt;
         &lt;td&gt;LsLL LsL&lt;br /&gt;
Line 418: Line 431:
         &lt;td&gt;Aeolian (minor)&lt;br /&gt;
         &lt;td&gt;Aeolian (minor)&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;5th Meantone[7]&lt;br /&gt;
         &lt;td&gt;5th Meantone [7]&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;LsLL sLL&lt;br /&gt;
         &lt;td&gt;LsLL sLL&lt;br /&gt;
Line 430: Line 443:
         &lt;td&gt;Phrygian&lt;br /&gt;
         &lt;td&gt;Phrygian&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;6th Meantone[7]&lt;br /&gt;
         &lt;td&gt;6th Meantone [7]&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;sLLL sLL&lt;br /&gt;
         &lt;td&gt;sLLL sLL&lt;br /&gt;
Line 442: Line 455:
         &lt;td&gt;Locrian&lt;br /&gt;
         &lt;td&gt;Locrian&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;7th Meantone[7]&lt;br /&gt;
         &lt;td&gt;7th Meantone [7]&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;sLLs LLL&lt;br /&gt;
         &lt;td&gt;sLLs LLL&lt;br /&gt;
Line 456: Line 469:
The octave inverse of a generator is also a generator. To avoid ambiguity in mode numbers, the smaller of the two generators is chosen. An exception is made for 3/2, which is preferred over 4/3 for historical reasons. &lt;strong&gt;Unlike modal UDP notation, the generator isn't always chroma-positive.&lt;/strong&gt; This is necessary to keep the same generator for different MOS's of the same &lt;a class="wiki_link" href="/Regular%20Temperaments"&gt;temperament&lt;/a&gt;, which guarantees that the smaller MOS will always be a subset of the larger MOS.&lt;br /&gt;
The octave inverse of a generator is also a generator. To avoid ambiguity in mode numbers, the smaller of the two generators is chosen. An exception is made for 3/2, which is preferred over 4/3 for historical reasons. &lt;strong&gt;Unlike modal UDP notation, the generator isn't always chroma-positive.&lt;/strong&gt; This is necessary to keep the same generator for different MOS's of the same &lt;a class="wiki_link" href="/Regular%20Temperaments"&gt;temperament&lt;/a&gt;, which guarantees that the smaller MOS will always be a subset of the larger MOS.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
For example, Meantone[5] is generated by 3/2, not 4/3. Because the generator is chroma-negative, the modes proceed from flatter to sharper. Because Meantone[5] and Meantone[7]have the same generator, C 2nd Meantone[5] = CDFGAC is a subset of C 2nd Meantone[7] = CDEFGABC.&lt;br /&gt;
For example, Meantone [5] is generated by 3/2, not 4/3. Because the generator is chroma-negative, the modes proceed from flatter to sharper. Because Meantone [5] and Meantone [7]have the same generator, C 2nd Meantone [5] = CDFGAC is a subset of C 2nd Meantone [7] = CDEFGABC.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
Pentatonic meantone scales:&lt;br /&gt;
Pentatonic meantone scales:&lt;br /&gt;
Line 477: Line 490:
         &lt;td&gt;major pentatonic&lt;br /&gt;
         &lt;td&gt;major pentatonic&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;1st Meantone[5]&lt;br /&gt;
         &lt;td&gt;1st Meantone [5]&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;ssL sL&lt;br /&gt;
         &lt;td&gt;ssL sL&lt;br /&gt;
Line 489: Line 502:
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;2nd Meantone[5]&lt;br /&gt;
         &lt;td&gt;2nd Meantone [5]&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;sLs sL&lt;br /&gt;
         &lt;td&gt;sLs sL&lt;br /&gt;
Line 501: Line 514:
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;3rd Meantone[5]&lt;br /&gt;
         &lt;td&gt;3rd Meantone [5]&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;sLs Ls&lt;br /&gt;
         &lt;td&gt;sLs Ls&lt;br /&gt;
Line 513: Line 526:
         &lt;td&gt;minor pentatonic&lt;br /&gt;
         &lt;td&gt;minor pentatonic&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;4th Meantone[5]&lt;br /&gt;
         &lt;td&gt;4th Meantone [5]&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;Lss Ls&lt;br /&gt;
         &lt;td&gt;Lss Ls&lt;br /&gt;
Line 525: Line 538:
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;5th Meantone[5]&lt;br /&gt;
         &lt;td&gt;5th Meantone [5]&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;LsL ss&lt;br /&gt;
         &lt;td&gt;LsL ss&lt;br /&gt;
Line 552: Line 565:
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;1st Meantone[12]&lt;br /&gt;
         &lt;td&gt;1st Meantone [12]&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;sLsLsLL sLsLL&lt;br /&gt;
         &lt;td&gt;sLsLsLL sLsLL&lt;br /&gt;
Line 562: Line 575:
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;2nd Meantone[12]&lt;br /&gt;
         &lt;td&gt;2nd Meantone [12]&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;sLsLLsL sLsLL&lt;br /&gt;
         &lt;td&gt;sLsLLsL sLsLL&lt;br /&gt;
Line 572: Line 585:
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;3rd Meantone[12]&lt;br /&gt;
         &lt;td&gt;3rd Meantone [12]&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;sLsLLsL sLLsL&lt;br /&gt;
         &lt;td&gt;sLsLLsL sLLsL&lt;br /&gt;
Line 582: Line 595:
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;4th Meantone[12]&lt;br /&gt;
         &lt;td&gt;4th Meantone [12]&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;sLLsLsL sLLsL&lt;br /&gt;
         &lt;td&gt;sLLsLsL sLLsL&lt;br /&gt;
Line 592: Line 605:
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;5th Meantone[12]&lt;br /&gt;
         &lt;td&gt;5th Meantone [12]&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;sLLsLsL LsLsL&lt;br /&gt;
         &lt;td&gt;sLLsLsL LsLsL&lt;br /&gt;
Line 602: Line 615:
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;6th Meantone[12]&lt;br /&gt;
         &lt;td&gt;6th Meantone [12]&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;LsLsLsL LsLsL&lt;br /&gt;
         &lt;td&gt;LsLsLsL LsLsL&lt;br /&gt;
Line 612: Line 625:
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;7th Meantone[12]&lt;br /&gt;
         &lt;td&gt;7th Meantone [12]&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;LsLsLLs LsLsL&lt;br /&gt;
         &lt;td&gt;LsLsLLs LsLsL&lt;br /&gt;
Line 634: Line 647:


&lt;br /&gt;
&lt;br /&gt;
&lt;a class="wiki_link" href="/Sensi"&gt;Sensi&lt;/a&gt;[8] modes in 19edo (generator = 3rd = ~9/7 = 7\19, L = 3\19, s = 2\19)&lt;br /&gt;
&lt;a class="wiki_link" href="/Sensi"&gt;Sensi&lt;/a&gt; [8] modes in 19edo (generator = 3rd = ~9/7 = 7\19, L = 3\19, s = 2\19)&lt;br /&gt;




Line 649: Line 662:
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;1st Sensi[8]&lt;br /&gt;
         &lt;td&gt;1st Sensi [8]&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;ssL ssL sL&lt;br /&gt;
         &lt;td&gt;ssL ssL sL&lt;br /&gt;
Line 659: Line 672:
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;2nd Sensi[8]&lt;br /&gt;
         &lt;td&gt;2nd Sensi [8]&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;ssL sL ssL&lt;br /&gt;
         &lt;td&gt;ssL sL ssL&lt;br /&gt;
Line 669: Line 682:
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;3rd Sensi[8]&lt;br /&gt;
         &lt;td&gt;3rd Sensi [8]&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;sL ssL ssL&lt;br /&gt;
         &lt;td&gt;sL ssL ssL&lt;br /&gt;
Line 679: Line 692:
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;4th Sensi[8]&lt;br /&gt;
         &lt;td&gt;4th Sensi [8]&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;sL ssL sL s&lt;br /&gt;
         &lt;td&gt;sL ssL sL s&lt;br /&gt;
Line 689: Line 702:
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;5th Sensi[8]&lt;br /&gt;
         &lt;td&gt;5th Sensi [8]&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;sL sL ssL s&lt;br /&gt;
         &lt;td&gt;sL sL ssL s&lt;br /&gt;
Line 699: Line 712:
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;6th Sensi[8]&lt;br /&gt;
         &lt;td&gt;6th Sensi [8]&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;Lss Lss Ls&lt;br /&gt;
         &lt;td&gt;Lss Lss Ls&lt;br /&gt;
Line 709: Line 722:
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;7th Sensi[8]&lt;br /&gt;
         &lt;td&gt;7th Sensi [8]&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;Lss Ls Lss&lt;br /&gt;
         &lt;td&gt;Lss Ls Lss&lt;br /&gt;
Line 719: Line 732:
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;8th Sensi[8]&lt;br /&gt;
         &lt;td&gt;8th Sensi [8]&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;Ls Lss Lss&lt;br /&gt;
         &lt;td&gt;Ls Lss Lss&lt;br /&gt;
Line 731: Line 744:


&lt;br /&gt;
&lt;br /&gt;
Porcupine[7] modes in 22edo (generator = 2nd = ~10/9 = 3\22, L = 4\22, s = 3\22), using &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/ups%20and%20downs%20notation"&gt;ups and downs notation&lt;/a&gt;.&lt;br /&gt;
Porcupine [7] modes in 22edo (generator = 2nd = ~10/9 = 3\22, L = 4\22, s = 3\22), using &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/ups%20and%20downs%20notation"&gt;ups and downs notation&lt;/a&gt;.&lt;br /&gt;
Because the generator is a 2nd, the genchain looks like the scale.&lt;br /&gt;
Because the generator is a 2nd, the genchain resembles the scale.&lt;br /&gt;




Line 747: Line 760:
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;1st Porcupine[7]&lt;br /&gt;
         &lt;td&gt;1st Porcupine [7]&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;ssss ssL&lt;br /&gt;
         &lt;td&gt;ssss ssL&lt;br /&gt;
Line 757: Line 770:
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;2nd Porcupine[7]&lt;br /&gt;
         &lt;td&gt;2nd Porcupine [7]&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;ssss sLs&lt;br /&gt;
         &lt;td&gt;ssss sLs&lt;br /&gt;
Line 767: Line 780:
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;3rd Porcupine[7]&lt;br /&gt;
         &lt;td&gt;3rd Porcupine [7]&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;ssss Lss&lt;br /&gt;
         &lt;td&gt;ssss Lss&lt;br /&gt;
Line 777: Line 790:
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;4th Porcupine[7]&lt;br /&gt;
         &lt;td&gt;4th Porcupine [7]&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;sssL sss&lt;br /&gt;
         &lt;td&gt;sssL sss&lt;br /&gt;
Line 787: Line 800:
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;5th Porcupine[7]&lt;br /&gt;
         &lt;td&gt;5th Porcupine [7]&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;ssLs sss&lt;br /&gt;
         &lt;td&gt;ssLs sss&lt;br /&gt;
Line 797: Line 810:
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;6th Porcupine[7]&lt;br /&gt;
         &lt;td&gt;6th Porcupine [7]&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;sLss sss&lt;br /&gt;
         &lt;td&gt;sLss sss&lt;br /&gt;
Line 807: Line 820:
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;7th Porcupine[7]&lt;br /&gt;
         &lt;td&gt;7th Porcupine [7]&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;Lsss sss&lt;br /&gt;
         &lt;td&gt;Lsss sss&lt;br /&gt;
Line 823: Line 836:
  To find a &lt;a class="wiki_link" href="/MODMOS%20Scales"&gt;MODMOS&lt;/a&gt; scale's name, start with the genchain for the scale, which will always have gaps. Compact it into a chain without gaps by altering one or more notes. If there is more than one way to do this, the way that alters as few notes as possible is generally preferable. Determine the mode number from the &lt;u&gt;compacted&lt;/u&gt; genchain. &lt;em&gt;[This may change]&lt;/em&gt; For example, for harmonic minor, A is the 4th note of the uncompacted genchain, but the 5th note of the compacted one. This is so that two notes an aug or dim fifth apart will have adjacent mode numbers. Just like A and E are adjacent, Ab and E are too. In other words, determining the mode number from the scale degree remains fifth-based.&lt;br /&gt;
  To find a &lt;a class="wiki_link" href="/MODMOS%20Scales"&gt;MODMOS&lt;/a&gt; scale's name, start with the genchain for the scale, which will always have gaps. Compact it into a chain without gaps by altering one or more notes. If there is more than one way to do this, the way that alters as few notes as possible is generally preferable. Determine the mode number from the &lt;u&gt;compacted&lt;/u&gt; genchain. &lt;em&gt;[This may change]&lt;/em&gt; For example, for harmonic minor, A is the 4th note of the uncompacted genchain, but the 5th note of the compacted one. This is so that two notes an aug or dim fifth apart will have adjacent mode numbers. Just like A and E are adjacent, Ab and E are too. In other words, determining the mode number from the scale degree remains fifth-based.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
Meantone[7,+3,-6] means that the 3rd note in the &lt;u&gt;compacted&lt;/u&gt; genchain is moved 7 steps to the right, and the 6th note is moved 7 steps to the left. The alterations are the exact opposite of the alterations needed to close the gaps in the uncompacted genchain. &amp;quot;+&amp;quot; and &amp;quot;-&amp;quot; are preferred over &amp;quot;#&amp;quot; and &amp;quot;b&amp;quot; because in the case of a chroma-negative generator, &amp;quot;+&amp;quot; makes the note flatter, as in the last example:&lt;br /&gt;
Meantone [7,+3,-6] means that the 3rd note in the &lt;u&gt;compacted&lt;/u&gt; genchain is moved 7 steps to the right, and the 6th note is moved 7 steps to the left. The alterations are the exact opposite of the alterations needed to close the gaps in the uncompacted genchain. &amp;quot;+&amp;quot; and &amp;quot;-&amp;quot; are preferred over &amp;quot;#&amp;quot; and &amp;quot;b&amp;quot; because in the case of a chroma-negative generator, &amp;quot;+&amp;quot; makes the note flatter, as in the last example:&lt;br /&gt;




Line 986: Line 999:


&lt;br /&gt;
&lt;br /&gt;
The ambiguity of MODMOS names can be resolved by devising a rule to determine the one proper compacted genchain. For example, choose the one that moves as few notes as possible, breaking ties with a bias towards moving to the right. The disadvantage of ambiguity is that it makes modes less apparent. If the double harmonic minor is 1st Meantone[7,-4,-5] and the double harmonic major is 6th Meantone[7,+3,+4], one can't tell that they are modes of each other. The advantage is that one can choose the mode number. If a piece changes from a MOS scale to a MODMOS scale, one can describe both scales with the same mode number. For example, a piece might change from minor = 5th Meantone[7] to melodic minor = 5th Meantone[7,+1,+3]. In this context, melodic minor is better described as an altered minor scale than an altered dorian scale.&lt;br /&gt;
The ambiguity of MODMOS names can be resolved by devising a rule to determine the one proper compacted genchain. For example, choose the one that moves as few notes as possible, breaking ties with a bias towards moving to the right.&lt;br /&gt;
&lt;br /&gt;
The disadvantage of ambiguity is that it makes modes less apparent. If the double harmonic minor is called 1st Meantone [7,-4,-5] and the double harmonic major is 6th Meantone [7,+3,+4], one can't tell that they are modes of each other. The advantage is that one can choose the mode number. If a piece changes from a MOS scale to a MODMOS scale, one can describe both scales with the same mode number. For example, a piece might change from minor = 5th Meantone [7] to melodic minor = 5th Meantone [7,+1,+3]. In this context, melodic minor is better described as an altered minor scale than an altered dorian scale.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
Neighboring MODMOS modes no longer differ by only one note. But the sharp/flat progression is maintained. Harmonic minor modes:&lt;br /&gt;
Unlike MOS scales, adjacent MODMOS modes differ by more than one note. Harmonic minor modes:&lt;br /&gt;
X X * X X X X * * X&lt;br /&gt;
1: C D# E F# G A B C&lt;br /&gt;
2: C D E F G# A B C&lt;br /&gt;
3: C Db Eb Fb Gb Ab Bbb C&lt;br /&gt;
4: C D Eb F# G A Bb C&lt;br /&gt;
5: C D Eb F G Ab B C&lt;br /&gt;
6: C Db E F G Ab Bb C&lt;br /&gt;
7: C Db Eb F Gb A Bb C&lt;br /&gt;
&lt;br /&gt;
Melodic minor modes:&lt;br /&gt;
1: C D E F# G# A B C&lt;br /&gt;
1: C D E F# G# A B C&lt;br /&gt;
2: C D E F# G A Bb C&lt;br /&gt;
2: C Db Eb Fb Gb Ab Bb C&lt;br /&gt;
3: C D Eb F G A B C&lt;br /&gt;
3: C D E F# G A Bb C&lt;br /&gt;
4: C D E F G Ab Bb C&lt;br /&gt;
4: C D Eb F G A B C&lt;br /&gt;
5: C Db Eb F G A Bb C&lt;br /&gt;
5: C D E F G Ab Bb C&lt;br /&gt;
6: C D Eb F Gb Ab Bb C&lt;br /&gt;
6: C Db Eb F G A Bb C&lt;br /&gt;
7: C Db Eb Fb Gb Ab Bb C&lt;br /&gt;
7: C D Eb F Gb Ab Bb C&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
Line 1,011: Line 1,037:
In order to be a MOS scale, the parallel genchains must of course be the right length, and without any gaps. But they must also line up exactly, so that each note has a neighbor immediately above and/or below. In other words, every column of the genweb must be complete.&lt;br /&gt;
In order to be a MOS scale, the parallel genchains must of course be the right length, and without any gaps. But they must also line up exactly, so that each note has a neighbor immediately above and/or below. In other words, every column of the genweb must be complete.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
If the period is a fraction of an octave, 3/2 is still preferred over 4/3, even though that makes the generator larger than the period. But shrutal's generator could be thought of as either 3/2 or 16/15, because 16/15 would still create the same mode numbers and thus the same scale names.&lt;br /&gt;
If the period is a fraction of an octave, 3/2 is still preferred over 4/3, even though that makes the generator larger than the period. A generator plus or minus a period is still a generator. Shrutal's generator could be thought of as either 3/2 or 16/15, because 16/15 would still create the same mode numbers and thus the same scale names.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
All five Shrutal[10] modes:&lt;br /&gt;
All five Shrutal [10] modes:&lt;br /&gt;




Line 1,030: Line 1,056:
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;1st Shrutal[10]&lt;br /&gt;
         &lt;td&gt;1st Shrutal [10]&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;ssssL-ssssL&lt;br /&gt;
         &lt;td&gt;ssssL-ssssL&lt;br /&gt;
Line 1,042: Line 1,068:
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;2nd Shrutal[10]&lt;br /&gt;
         &lt;td&gt;2nd Shrutal [10]&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;sssLs-sssLs&lt;br /&gt;
         &lt;td&gt;sssLs-sssLs&lt;br /&gt;
Line 1,054: Line 1,080:
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;3rd Shrutal[10]&lt;br /&gt;
         &lt;td&gt;3rd Shrutal [10]&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;ssLss-ssLss&lt;br /&gt;
         &lt;td&gt;ssLss-ssLss&lt;br /&gt;
Line 1,066: Line 1,092:
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;4th Shrutal[10]&lt;br /&gt;
         &lt;td&gt;4th Shrutal [10]&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;sLsss-sLsss&lt;br /&gt;
         &lt;td&gt;sLsss-sLsss&lt;br /&gt;
Line 1,078: Line 1,104:
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;5th Shrutal[10]&lt;br /&gt;
         &lt;td&gt;5th Shrutal [10]&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;Lssss-Lssss&lt;br /&gt;
         &lt;td&gt;Lssss-Lssss&lt;br /&gt;
Line 1,459: Line 1,485:
&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
Admins: Please delete the blank page at &lt;!-- ws:start:WikiTextUrlRule:1636:http://xenharmonic.wikispaces.com/Modal+Notation+by+Genchain+Position --&gt;&lt;a href="http://xenharmonic.wikispaces.com/Modal+Notation+by+Genchain+Position"&gt;http://xenharmonic.wikispaces.com/Modal+Notation+by+Genchain+Position&lt;/a&gt;&lt;!-- ws:end:WikiTextUrlRule:1636 --&gt;&lt;/body&gt;&lt;/html&gt;</pre></div>
Admins: Please delete the blank page at &lt;!-- ws:start:WikiTextUrlRule:1649:http://xenharmonic.wikispaces.com/Modal+Notation+by+Genchain+Position --&gt;&lt;a href="http://xenharmonic.wikispaces.com/Modal+Notation+by+Genchain+Position"&gt;http://xenharmonic.wikispaces.com/Modal+Notation+by+Genchain+Position&lt;/a&gt;&lt;!-- ws:end:WikiTextUrlRule:1649 --&gt;&lt;/body&gt;&lt;/html&gt;</pre></div>