Monzo: Difference between revisions

Wikispaces>hstraub
**Imported revision 599073962 - Original comment: **
Wikispaces>xenwolf
**Imported revision 602965630 - Original comment: tables for examples, added one space as padding as is used in most monzo expressions, for instance on the comma page**
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:hstraub|hstraub]] and made on <tt>2016-11-10 05:06:02 UTC</tt>.<br>
: This revision was by author [[User:xenwolf|xenwolf]] and made on <tt>2017-01-02 12:28:05 UTC</tt>.<br>
: The original revision id was <tt>599073962</tt>.<br>
: The original revision id was <tt>602965630</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt>tables for examples, added one space as padding as is used in most monzo expressions, for instance on the comma page</tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
<h4>Original Wikitext content:</h4>
<h4>Original Wikitext content:</h4>
Line 11: Line 11:


=Definition=  
=Definition=  
A **monzo** is a way of notating a JI interval that allows us to express directly how any "composite" interval is represented in terms of those simpler prime intervals. They are typically written using the notation |a b c d e f ... &gt;, where the columns represent how the primes 2, 3, 5, 7, 11, 13, etc, in that order, contribute to the interval's prime factorization, up to some [[harmonic limit|prime limit]].
A **monzo** is a way of notating a JI interval that allows us to express directly how any "composite" interval is represented in terms of those simpler prime intervals. They are typically written using the notation | a b c d e f ... &gt;, where the columns represent how the primes 2, 3, 5, 7, 11, 13, etc, in that order, contribute to the interval's prime factorization, up to some [[harmonic limit|prime limit]].


Monzos can be thought of as counterparts to [[Vals|vals]].
Monzos can be thought of as counterparts to [[Vals|vals]].
Line 18: Line 18:


=Examples=  
=Examples=  
For example, the interval 15/8 can be thought of as having 5*3 in the numerator, and 2*2*2 in the denominator. This can be compactly represented by the expression 2^-3 * 3^1 * 5^1, which is exactly equal to 15/8. We construct the monzo by taking the exponent from each prime, in order, and placing them within the |.........&gt; brackets, hence yielding |-3 1 1&gt;.
For example, the interval 15/8 can be thought of as having 5*3 in the numerator, and 2*2*2 in the denominator. This can be compactly represented by the expression 2^-3 * 3^1 * 5^1, which is exactly equal to 15/8. We construct the monzo by taking the exponent from each prime, in order, and placing them within the | ... &gt; brackets, hence yielding | -3 1 1 &gt;.


Here are some common 5-limit monzos, for your reference:
Here are some common 5-limit monzos, for your reference:
3/2: |-1 1 0&gt;
||~ Ratio ||~ Monzo ||
5/4: |-2 0 1&gt;
||= 3/2 || | -1 1 0 &gt; ||
9/8: |-3 2 0&gt;
||= 5/4 || | -2 0 1 &gt; ||
81/80: |-4 4 -1&gt;
||= 9/8 || | -3 2 0 &gt; ||
||= 81/80 || | -4 4 -1 &gt; ||


Here are a few 7-limit monzos:
Here are a few 7-limit monzos:
7/4: |-2 0 0 1&gt;
||~ Ratio ||~ Monzo ||
7/6: |-1 -1 0 1&gt;
||= 7/4 || | -2 0 0 1 &gt; ||
7/5: |0 0 -1 1&gt;
||= 7/6 || | -1 -1 0 1 &gt; ||
||= 7/5 || | 0 0 -1 1 &gt; ||


=Relationship with vals=  
=Relationship with vals=  
//See also: [[Vals]], [[Keenan's explanation of vals]], [[Vals and Tuning Space]] (more mathematical)//
//See also: [[Vals]], [[Keenan's explanation of vals]], [[Vals and Tuning Space]] (more mathematical)//


Monzos are important because they enable us to see how any JI interval "maps" onto a val. This mapping is expressed by writing the val and the monzo together, such as &lt;12 19 28|-4 4 -1&gt;. The mapping is extremely easily to calculate: simply multiply together each component in the same position on both sides of the line, and add the results together. This is perhaps best demonstrated by example:
Monzos are important because they enable us to see how any JI interval "maps" onto a val. This mapping is expressed by writing the val and the monzo together, such as &lt; 12 19 28 | -4 4 -1 &gt;. The mapping is extremely easily to calculate: simply multiply together each component in the same position on both sides of the line, and add the results together. This is perhaps best demonstrated by example:


&lt;12 19 28|-4 4 -1&gt;
&lt; 12 19 28 | -4 4 -1 &gt;
(12*-4) + (19*4) + (28*1)&lt;span class="st"&gt; = &lt;/span&gt;0
(12*-4) + (19*4) + (28*1)&lt;span class="st"&gt; = &lt;/span&gt;0


In this case, the val &lt;12 19 28| is the [[patent val]] for 12-equal, and |-4 4 -1&gt; is 81/80, or the syntonic comma. The fact that &lt;12 19 28|-4 4 -1&gt; tells us that 81/80 is mapped to 0 steps in 12-equal - aka it's tempered out - which tells us that 12-equal is a meantone temperament. It is noteworthy that almost the entirety of western music, particularly western music composed for 12-equal or 12-tone well temperaments, is made possible by the above equation.
In this case, the val &lt; 12 19 28 | is the [[patent val]] for 12-equal, and | -4 4 -1 &gt; is 81/80, or the syntonic comma. The fact that &lt; 12 19 28 | -4 4 -1 &gt; tells us that 81/80 is mapped to 0 steps in 12-equal - aka it's tempered out - which tells us that 12-equal is a meantone temperament. It is noteworthy that almost the entirety of western music, particularly western music composed for 12-equal or 12-tone well temperaments, is made possible by the above equation.


**In general: &lt;a b c|d e f&gt; = ad + be + cf**</pre></div>
**In general: &lt; a b c | d e f &gt; = ad + be + cf**</pre></div>
<h4>Original HTML content:</h4>
<h4>Original HTML content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;monzos&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;span style="display: block; text-align: right;"&gt;&lt;a class="wiki_link" href="/Monzo%28Esp%29"&gt;Español&lt;/a&gt; - &lt;a class="wiki_link" href="/%E3%83%A2%E3%83%B3%E3%82%BE"&gt;日本語&lt;/a&gt;&lt;br /&gt;
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;monzos&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;span style="display: block; text-align: right;"&gt;&lt;a class="wiki_link" href="/Monzo%28Esp%29"&gt;Español&lt;/a&gt; - &lt;a class="wiki_link" href="/%E3%83%A2%E3%83%B3%E3%82%BE"&gt;日本語&lt;/a&gt;&lt;br /&gt;
Line 48: Line 50:
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc0"&gt;&lt;a name="Definition"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt;Definition&lt;/h1&gt;
&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc0"&gt;&lt;a name="Definition"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt;Definition&lt;/h1&gt;
  A &lt;strong&gt;monzo&lt;/strong&gt; is a way of notating a JI interval that allows us to express directly how any &amp;quot;composite&amp;quot; interval is represented in terms of those simpler prime intervals. They are typically written using the notation |a b c d e f ... &amp;gt;, where the columns represent how the primes 2, 3, 5, 7, 11, 13, etc, in that order, contribute to the interval's prime factorization, up to some &lt;a class="wiki_link" href="/harmonic%20limit"&gt;prime limit&lt;/a&gt;.&lt;br /&gt;
  A &lt;strong&gt;monzo&lt;/strong&gt; is a way of notating a JI interval that allows us to express directly how any &amp;quot;composite&amp;quot; interval is represented in terms of those simpler prime intervals. They are typically written using the notation | a b c d e f ... &amp;gt;, where the columns represent how the primes 2, 3, 5, 7, 11, 13, etc, in that order, contribute to the interval's prime factorization, up to some &lt;a class="wiki_link" href="/harmonic%20limit"&gt;prime limit&lt;/a&gt;.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
Monzos can be thought of as counterparts to &lt;a class="wiki_link" href="/Vals"&gt;vals&lt;/a&gt;.&lt;br /&gt;
Monzos can be thought of as counterparts to &lt;a class="wiki_link" href="/Vals"&gt;vals&lt;/a&gt;.&lt;br /&gt;
Line 55: Line 57:
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:2:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc1"&gt;&lt;a name="Examples"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:2 --&gt;Examples&lt;/h1&gt;
&lt;!-- ws:start:WikiTextHeadingRule:2:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc1"&gt;&lt;a name="Examples"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:2 --&gt;Examples&lt;/h1&gt;
  For example, the interval 15/8 can be thought of as having 5*3 in the numerator, and 2*2*2 in the denominator. This can be compactly represented by the expression 2^-3 * 3^1 * 5^1, which is exactly equal to 15/8. We construct the monzo by taking the exponent from each prime, in order, and placing them within the |.........&amp;gt; brackets, hence yielding |-3 1 1&amp;gt;.&lt;br /&gt;
  For example, the interval 15/8 can be thought of as having 5*3 in the numerator, and 2*2*2 in the denominator. This can be compactly represented by the expression 2^-3 * 3^1 * 5^1, which is exactly equal to 15/8. We construct the monzo by taking the exponent from each prime, in order, and placing them within the | ... &amp;gt; brackets, hence yielding | -3 1 1 &amp;gt;.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
Here are some common 5-limit monzos, for your reference:&lt;br /&gt;
Here are some common 5-limit monzos, for your reference:&lt;br /&gt;
3/2: |-1 1 0&amp;gt;&lt;br /&gt;
 
5/4: |-2 0 1&amp;gt;&lt;br /&gt;
 
9/8: |-3 2 0&amp;gt;&lt;br /&gt;
&lt;table class="wiki_table"&gt;
81/80: |-4 4 -1&amp;gt;&lt;br /&gt;
    &lt;tr&gt;
        &lt;th&gt;Ratio&lt;br /&gt;
&lt;/th&gt;
        &lt;th&gt;Monzo&lt;br /&gt;
&lt;/th&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;3/2&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;| -1 1 0 &amp;gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;5/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;| -2 0 1 &amp;gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;9/8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;| -3 2 0 &amp;gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;81/80&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;| -4 4 -1 &amp;gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
&lt;/table&gt;
 
&lt;br /&gt;
&lt;br /&gt;
Here are a few 7-limit monzos:&lt;br /&gt;
Here are a few 7-limit monzos:&lt;br /&gt;
7/4: |-2 0 0 1&amp;gt;&lt;br /&gt;
 
7/6: |-1 -1 0 1&amp;gt;&lt;br /&gt;
 
7/5: |0 0 -1 1&amp;gt;&lt;br /&gt;
&lt;table class="wiki_table"&gt;
    &lt;tr&gt;
        &lt;th&gt;Ratio&lt;br /&gt;
&lt;/th&gt;
        &lt;th&gt;Monzo&lt;br /&gt;
&lt;/th&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;7/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;| -2 0 0 1 &amp;gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;7/6&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;| -1 -1 0 1 &amp;gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td style="text-align: center;"&gt;7/5&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;| 0 0 -1 1 &amp;gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
&lt;/table&gt;
 
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:4:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc2"&gt;&lt;a name="Relationship with vals"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:4 --&gt;Relationship with vals&lt;/h1&gt;
&lt;!-- ws:start:WikiTextHeadingRule:4:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc2"&gt;&lt;a name="Relationship with vals"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:4 --&gt;Relationship with vals&lt;/h1&gt;
  &lt;em&gt;See also: &lt;a class="wiki_link" href="/Vals"&gt;Vals&lt;/a&gt;, &lt;a class="wiki_link" href="/Keenan%27s%20explanation%20of%20vals"&gt;Keenan's explanation of vals&lt;/a&gt;, &lt;a class="wiki_link" href="/Vals%20and%20Tuning%20Space"&gt;Vals and Tuning Space&lt;/a&gt; (more mathematical)&lt;/em&gt;&lt;br /&gt;
  &lt;em&gt;See also: &lt;a class="wiki_link" href="/Vals"&gt;Vals&lt;/a&gt;, &lt;a class="wiki_link" href="/Keenan%27s%20explanation%20of%20vals"&gt;Keenan's explanation of vals&lt;/a&gt;, &lt;a class="wiki_link" href="/Vals%20and%20Tuning%20Space"&gt;Vals and Tuning Space&lt;/a&gt; (more mathematical)&lt;/em&gt;&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
Monzos are important because they enable us to see how any JI interval &amp;quot;maps&amp;quot; onto a val. This mapping is expressed by writing the val and the monzo together, such as &amp;lt;12 19 28|-4 4 -1&amp;gt;. The mapping is extremely easily to calculate: simply multiply together each component in the same position on both sides of the line, and add the results together. This is perhaps best demonstrated by example:&lt;br /&gt;
Monzos are important because they enable us to see how any JI interval &amp;quot;maps&amp;quot; onto a val. This mapping is expressed by writing the val and the monzo together, such as &amp;lt; 12 19 28 | -4 4 -1 &amp;gt;. The mapping is extremely easily to calculate: simply multiply together each component in the same position on both sides of the line, and add the results together. This is perhaps best demonstrated by example:&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&amp;lt;12 19 28|-4 4 -1&amp;gt;&lt;br /&gt;
&amp;lt; 12 19 28 | -4 4 -1 &amp;gt;&lt;br /&gt;
(12*-4) + (19*4) + (28*1)&lt;span class="st"&gt; = &lt;/span&gt;0&lt;br /&gt;
(12*-4) + (19*4) + (28*1)&lt;span class="st"&gt; = &lt;/span&gt;0&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
In this case, the val &amp;lt;12 19 28| is the &lt;a class="wiki_link" href="/patent%20val"&gt;patent val&lt;/a&gt; for 12-equal, and |-4 4 -1&amp;gt; is 81/80, or the syntonic comma. The fact that &amp;lt;12 19 28|-4 4 -1&amp;gt; tells us that 81/80 is mapped to 0 steps in 12-equal - aka it's tempered out - which tells us that 12-equal is a meantone temperament. It is noteworthy that almost the entirety of western music, particularly western music composed for 12-equal or 12-tone well temperaments, is made possible by the above equation.&lt;br /&gt;
In this case, the val &amp;lt; 12 19 28 | is the &lt;a class="wiki_link" href="/patent%20val"&gt;patent val&lt;/a&gt; for 12-equal, and | -4 4 -1 &amp;gt; is 81/80, or the syntonic comma. The fact that &amp;lt; 12 19 28 | -4 4 -1 &amp;gt; tells us that 81/80 is mapped to 0 steps in 12-equal - aka it's tempered out - which tells us that 12-equal is a meantone temperament. It is noteworthy that almost the entirety of western music, particularly western music composed for 12-equal or 12-tone well temperaments, is made possible by the above equation.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;strong&gt;In general: &amp;lt;a b c|d e f&amp;gt; = ad + be + cf&lt;/strong&gt;&lt;/body&gt;&lt;/html&gt;</pre></div>
&lt;strong&gt;In general: &amp;lt; a b c | d e f &amp;gt; = ad + be + cf&lt;/strong&gt;&lt;/body&gt;&lt;/html&gt;</pre></div>