39edo: Difference between revisions

BudjarnLambeth (talk | contribs)
Instruments: stretch compression
BudjarnLambeth (talk | contribs)
No edit summary
 
Line 884: Line 884:
|}
|}
<nowiki/>* [[Normal lists|Octave-reduced form]], reduced to the first half-octave, and [[normal lists|minimal form]] in parentheses if distinct
<nowiki/>* [[Normal lists|Octave-reduced form]], reduced to the first half-octave, and [[normal lists|minimal form]] in parentheses if distinct
== 39edo and world music ==
39edo is a good candidate for a "universal tuning" in that it offers reasonable approximations of many different world music [[approaches to musical tuning|traditions]]; it is one of the simplest edos that can make this claim. Because of this, composers wishing to combine multiple world music traditions (for example, [[gamelan]] with [[maqam]] singing) within one unified framework might find 39edo an interesting possibility.
=== Western ===
39edo offers not one, but several different ways to realize the traditional Western diatonic scale. One way is to simply take a [[chain of fifths]] (the diatonic mos: 7 7 2 7 7 7 2). Because 39edo is a [[superpyth]] rather than a [[meantone]] system, this means that the harmonic quality of its diatonic scale will differ somewhat, since "minor" and "major" triads now approximate 6:7:9 and 14:18:21 respectively, rather than 10:12:15 and 4:5:6 as in meantone diatonic systems. Diatonic compositions translated onto this scale thus acquire a wildly different harmonic character, albeit still pleasing.
Another option is to use a [[modmos]], such as 7 6 3 7 6 7 3; this scale enables us to continue using [[5-limit|pental]] rather than [[7-limit|septimal]] thirds, but it has a false ([[wolf interval|wolf]]) fifth. When translating diatonic compositions into this scale, it is possible to avoid the wolf fifth by introducing accidental notes when necessary. It is also possible to avoid the wolf fifth by extending the scale to either 7 3 3 3 7 3 3 7 3 (a [[modmos]] of type [[3L&nbsp;6s]]) or 4 3 6 3 4 3 6 4 3 3. There are other modmos scales that combine both pental and septimal harmonies. As such, a single Western classical or pop composition can be translated into 39edo in ''many'' different ways, acquiring a distinctly different but still harmonious character each time.
The mos and the modmos scales all have smaller-than-usual [[semitone (interval region)|semitones]], which makes them more effective for melody than their counterparts in 12edo or meantone systems.
Because 39edo and 12edo both have an overall sharp character and share the same major third, they have a relatively similar sound. Thus, 39edo (unlike, say, 22edo or 19edo, which are both "acquired tastes") does not sound all that [[xenharmonic]] to people used to 12edo. Check out [https://www.prismnet.com/~hmiller/midi/canon39.mid Pachelbel's Canon in 39edo] (using the 7 6 3 7 6 7 3 modmos), for example.
=== Indian ===
A similar situation arises with [[Indian music]] since the sruti system, like the Western system, also has multiple possible mappings in 39edo. Many of these are modified versions of the [[17L&nbsp;5s]] MOS (where the generator is a perfect fifth).
=== Arabic, Turkish, Iranian ===
While [[Arabic, Turkish, Persian music|middle-eastern music]] is commonly approximated using [[24edo]], 39edo offers a potentially better alternative. [[17edo]] and 24edo both satisfy the "Level 1" requirements for [[maqam]] tuning systems. 39edo is a Level 2 system because:
* It has two types of "neutral" seconds (154 and 185 cents)
* It has two minor seconds (92 and 123 cents), which when added together give a whole tone (215 cents)
whereas neither 17edo nor 24edo satisfy these properties.
39edo will likely be more suited to some middle-eastern scales than others. Specifically, Turkish music (in which the Rast makam has a "major-like" wide neutral third and a wide "neutral" second approaching 10/9), will likely be especially well suited to 39edo.
=== Blues / Jazz / African-American ===
The [[harmonic seventh]] ("[[barbershop]] seventh") [[tetrad]] is reasonably well approximated in 39edo, and some temperaments (augene in particular) give scales that are liberally supplied with them. John Coltrane might have loved augene (→ [[Wikipedia: Coltrane changes]]).
[[Tritone]] substitution, which is a major part of jazz and blues harmony, is more complicated in 39edo because there are two types of tritones. Therefore, the tritone substitution of one seventh chord will need to be a different type of seventh chord. However, this also opens new possibilities; if the substituted chord is of a more consonant type than the original, then the tritone substitution may function as a ''resolution'' rather than a suspension.
Blue notes, rather than being considered inflections, can be notated as accidentals instead; for example, a "blue major third" can be identified as either of the two neutral thirds. There are two possible [[mapping]]s for [[7/4]] which are about equal in closeness. The sharp mapping is the normal one because it works better with the [[5/4]] and [[3/2]], but using the flat one instead (as an accidental) allows for another type of blue note.
=== Other ===
39edo offers approximations of [[pelog]] and [[mavila]] using the flat fifth as a generator. Pelog can also be approximated as 4 5 13 4 13.
It also offers ''many'' possible [[pentatonic]] scales, including the [[2L 3s]] mos (which is 9 7 7 9 7). [[Slendro]] can be approximated using that scale or using something like the [[quasi-equal]] 8 8 8 8 7 or 8 8 7 8 8.
One expressive [[pentatonic]] scale is the oneirotonic subset 9 6 9 9 6.
Many Asian{{clarify|which ones specifically}} and [[African music|African]] {{clarify|which ones specifically}} musical styles can thus be accommodated.


== Octave stretch or compression ==
== Octave stretch or compression ==
Line 978: Line 937:
{{Harmonics in equal|91|5|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 91ed5}}
{{Harmonics in equal|91|5|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 91ed5}}
{{Harmonics in equal|91|5|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 91ed5 (continued)}}
{{Harmonics in equal|91|5|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 91ed5 (continued)}}
== 39edo and world music ==
Some might consider 39edo a candidate for a "universal tuning" in that it offers reasonable approximations of many different world music [[approaches to musical tuning|traditions]]; it is one of the simplest edos that can make this claim. Because of this, composers wishing to combine multiple world music traditions (for example, [[gamelan]] with [[maqam]] singing) within one unified framework might find 39edo an interesting possibility.
=== Western ===
39edo offers not one, but several different ways to realize the traditional Western diatonic scale. One way is to simply take a [[chain of fifths]] (the diatonic mos: 7 7 2 7 7 7 2). Because 39edo is a [[superpyth]] rather than a [[meantone]] system, this means that the harmonic quality of its diatonic scale will differ somewhat, since "minor" and "major" triads now approximate 6:7:9 and 14:18:21 respectively, rather than 10:12:15 and 4:5:6 as in meantone diatonic systems. Diatonic compositions translated onto this scale thus acquire a wildly different harmonic character, albeit still pleasing.
Another option is to use a [[modmos]], such as 7 6 3 7 6 7 3; this scale enables us to continue using [[5-limit|pental]] rather than [[7-limit|septimal]] thirds, but it has a false ([[wolf interval|wolf]]) fifth. When translating diatonic compositions into this scale, it is possible to avoid the wolf fifth by introducing accidental notes when necessary. It is also possible to avoid the wolf fifth by extending the scale to either 7 3 3 3 7 3 3 7 3 (a [[modmos]] of type [[3L&nbsp;6s]]) or 4 3 6 3 4 3 6 4 3 3. There are other modmos scales that combine both pental and septimal harmonies. As such, a single Western classical or pop composition can be translated into 39edo in ''many'' different ways, acquiring a distinctly different but still harmonious character each time.
The mos and the modmos scales all have smaller-than-usual [[semitone (interval region)|semitones]], which makes them more effective for melody than their counterparts in 12edo or meantone systems.
Because 39edo and 12edo both have an overall sharp character and share the same major third, they have a relatively similar sound. Thus, 39edo (unlike, say, 22edo or 19edo, which are both "acquired tastes") does not sound all that [[xenharmonic]] to people used to 12edo. Check out [https://www.prismnet.com/~hmiller/midi/canon39.mid Pachelbel's Canon in 39edo] (using the 7 6 3 7 6 7 3 modmos), for example.
=== Indian ===
A similar situation arises with [[Indian music]] since the sruti system, like the Western system, also has multiple possible mappings in 39edo. Many of these are modified versions of the [[17L&nbsp;5s]] MOS (where the generator is a perfect fifth).
=== Arabic, Turkish, Iranian ===
While [[Arabic, Turkish, Persian music|middle-eastern music]] is commonly approximated using [[24edo]], 39edo offers a potentially better alternative. [[17edo]] and 24edo both satisfy the "Level 1" requirements for [[maqam]] tuning systems. 39edo is a Level 2 system because:
* It has two types of "neutral" seconds (154 and 185 cents)
* It has two minor seconds (92 and 123 cents), which when added together give a whole tone (215 cents)
whereas neither 17edo nor 24edo satisfy these properties.
39edo will likely be more suited to some middle-eastern scales than others. Specifically, Turkish music (in which the Rast makam has a "major-like" wide neutral third and a wide "neutral" second approaching 10/9), will likely be especially well suited to 39edo.
=== Blues / Jazz / African-American ===
The [[harmonic seventh]] ("[[barbershop]] seventh") [[tetrad]] is reasonably well approximated in 39edo, and some temperaments (augene in particular) give scales that are liberally supplied with them. John Coltrane might have loved augene (→ [[Wikipedia: Coltrane changes]]).
[[Tritone]] substitution, which is a major part of jazz and blues harmony, is more complicated in 39edo because there are two types of tritones. Therefore, the tritone substitution of one seventh chord will need to be a different type of seventh chord. However, this also opens new possibilities; if the substituted chord is of a more consonant type than the original, then the tritone substitution may function as a ''resolution'' rather than a suspension.
Blue notes, rather than being considered inflections, can be notated as accidentals instead; for example, a "blue major third" can be identified as either of the two neutral thirds. There are two possible [[mapping]]s for [[7/4]] which are about equal in closeness. The sharp mapping is the normal one because it works better with the [[5/4]] and [[3/2]], but using the flat one instead (as an accidental) allows for another type of blue note.
=== Other ===
39edo offers approximations of [[pelog]] and [[mavila]] using the flat fifth as a generator. Pelog can also be approximated as 4 5 13 4 13.
It also offers ''many'' possible [[pentatonic]] scales, including the [[2L 3s]] mos (which is 9 7 7 9 7). [[Slendro]] can be approximated using that scale or using something like the [[quasi-equal]] 8 8 8 8 7 or 8 8 7 8 8.
One expressive [[pentatonic]] scale is the oneirotonic subset 9 6 9 9 6.
Many Asian{{clarify|which ones specifically}} and [[African music|African]] {{clarify|which ones specifically}} musical styles can thus be accommodated.


== Instruments ==
== Instruments ==