User:BudjarnLambeth/Sandbox2: Difference between revisions
Line 12: | Line 12: | ||
; [[zpi|288zpi]] | ; [[zpi|288zpi]] | ||
* Step size: 20.736{{c}}, octave size: | * Step size: 20.736{{c}}, octave size: 1202.69{{c}} | ||
Stretching the octave of 58edo by around 2.5{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 288zpi does this. | |||
{{Harmonics in cet|20.736|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in | {{Harmonics in cet|20.736|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 288zpi}} | ||
{{Harmonics in cet|20.736|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in | {{Harmonics in cet|20.736|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 288zpi (continued)}} | ||
; 58edo | ; 58edo | ||
* Step size: 20.690{{c}}, octave size: | * Step size: 20.690{{c}}, octave size: 1200.00{{c}} | ||
Pure-octaves | Pure-octaves 58edo approximates all harmonics up to 16 within NNN{{c}}. | ||
{{Harmonics in equal|58|2|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in | {{Harmonics in equal|58|2|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 58edo}} | ||
{{Harmonics in equal|58|2|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in | {{Harmonics in equal|58|2|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 58edo (continued)}} | ||
; [[150ed6]] | ; [[150ed6]] | ||
* Step size: | * Step size: 20.680{{c}}, octave size: 1199.42{{c}} | ||
Compressing the octave of 58edo by around half a cent results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 150ed6 does this. | |||
{{Harmonics in equal|150|6|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in | {{Harmonics in equal|150|6|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 150ed6}} | ||
{{Harmonics in equal|150|6|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in | {{Harmonics in equal|150|6|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 150ed6 (continued)}} | ||
; [[92edt]] | ; [[92edt]] | ||
* Step size: | * Step size: 20.673{{c}}, octave size: 1199.06{{c}} | ||
Compressing the octave of 58edo by around 1{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 92edt does this. | |||
{{Harmonics in equal|92|3|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in | {{Harmonics in equal|92|3|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 92edt}} | ||
{{Harmonics in equal|92|3|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in | {{Harmonics in equal|92|3|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 92edt (continued)}} | ||
; [[zpi|289zpi]] / [[WE|58et, 7-limit WE tuning]] | ; [[zpi|289zpi]] / [[WE|58et, 7-limit WE tuning]] | ||
* Step size: 20.666{{c}}, octave size: 1198.63{{c}} | * Step size: 20.666{{c}}, octave size: 1198.63{{c}} | ||
Compressing the octave of 58edo by just under 1.5{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. Its 7-limit WE tuning and 7-limit [[TE]] tuning both do this. The tuning 289zpi also does this, its octave differing from 7-limit WE by only 0.06{{c}}. | |||
{{Harmonics in cet|20.666|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in | {{Harmonics in cet|20.666|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 289zpi}} | ||
{{Harmonics in cet|20.666|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in | {{Harmonics in cet|20.666|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 289zpi (continued)}} | ||
; [[WE|58et, 13-limit WE tuning]] | ; [[WE|58et, 13-limit WE tuning]] | ||
* Step size: 20.663{{c}}, octave size: 1198.45{{c}} | * Step size: 20.663{{c}}, octave size: 1198.45{{c}} | ||
Compressing the octave of 58edo by just over 1.5{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. Its 13-limit WE tuning and 13-limit [[TE]] tuning both do this. | |||
{{Harmonics in cet|20.663|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in | {{Harmonics in cet|20.663|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 58et, 13-limit WE tuning}} | ||
{{Harmonics in cet|20.663|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in | {{Harmonics in cet|20.663|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 58et, 13-limit WE tuning (continued)}} |