User:BudjarnLambeth/Sandbox2: Difference between revisions

BudjarnLambeth (talk | contribs)
BudjarnLambeth (talk | contribs)
Line 7: Line 7:
= Title2 =
= Title2 =
== Octave stretch or compression ==
== Octave stretch or compression ==
What follows is a comparison of compressed-octave 27edo tunings.
What follows is a comparison of stretched- and compressed-octave 41edo tunings.


; 27edo
; [[184zpi]] / [[WE|41et, 11-limit WE tuning]]
* Step size: 44.444{{c}}, octave size: 1200.0{{c}}  
* Step size: 29.277{{c}}, octave size: NNN{{c}}
Pure-octaves 27edo approximates all harmonics up to 16 within 18.3{{c}}.
Stretching the octave of EDONAME by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. Its 11-limit WE tuning and 11-limit [[TE]] tuning both do this. So does 184zpi, which is identical to WE within 1/1000 of a cent.
{{Harmonics in equal|27|2|1|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in 27edo}}
{{Harmonics in cet|29.277|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 41et, 11-limit WE tuning}}
{{Harmonics in equal|27|2|1|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in 27edo (continued)}}
{{Harmonics in cet|29.277|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 41et, 11-limit WE tuning (continued)}}


; [[WE|27et, 13-limit WE tuning]]
; 41edo
* Step size: 44.375{{c}}, octave size: 1198.9{{c}}
* Step size: 29.268{{c}}, octave size: 1200.0{{c}}  
Compressing the octave of 27edo by around 2{{c}} results in substantially improved primes 3, 5 and 7 at little cost. This approximates all harmonics up to 16 within 19.9{{c}}. Its 13-limit WE tuning and 13-limit [[TE]] tuning both do this.
Pure-octaves 41edo approximates all harmonics up to 16 within NNN{{c}}.
{{Harmonics in cet|44.375|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in 27et, 13-limit WE tuning}}
{{Harmonics in equal|41|2|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 41edo}}
{{Harmonics in cet|44.375|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in 27et, 13-limit WE tuning (continued)}}
{{Harmonics in equal|41|2|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 41edo (continued)}}


; [[97ed12]]  
; [[WE|41et, 13-limit WE tuning]]  
* Step size: 44.350{{c}}, octave size: 1197.5{{c}}
* Step size: 29.267{{c}}, octave size: NNN{{c}}
Compressing the octave of 27edo by around 2.5{{c}} has the same benefits and drawbacks as the 13-limit tuning, but both are slightly amplified. This approximates all harmonics up to 16 within 17.6{{c}}. The tuning 97ed12 does this.
Compressing the octave of 41edo by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. Its 13-limit WE tuning and 13-limit [[TE]] tuning both do this.
{{Harmonics in equal|97|12|1|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in 97ed12}}
{{Harmonics in cet|29.267|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 41et, 13-limit WE tuning}}
{{Harmonics in equal|97|12|1|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in 97ed12 (continued)}}
{{Harmonics in cet|29.267|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 41et, 13-limit WE tuning (continued)}}


; [[zpi|106zpi]] / [[WE|27et, 7-limit WE tuning]] / [[70ed6]]
; [[147ed12]]  
* Step size (106zpi): 44.306{{c}}
* Step size: NNN{{c}}, octave size: NNN{{c}}
* Octave size (70ed6): 1196.5{{c}}
Compressing the octave of 41edo by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 147ed12 does this.
* Octave size (7-lim WE): 1196.4{{c}}
{{Harmonics in equal|147|12|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 147ed12}}
* Octave size (106zpi): 1196.2{{c}}
{{Harmonics in equal|147|12|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 147ed12 (continued)}}
Compressing the octave of 27edo by around 3.5{{c}} results in even more improvement to primes 3, 5 and 7 than the 13-limit tuning, but now at the cost of moderate damage to 2, 11 and 13. This approximates all harmonics up to 16 within 15.4{{c}}. Its 7-limit WE tuning and 7-limit [[TE]] tuning both do this. So do the tunings 106zpi and 70ed6.
{{Harmonics in cet|44.306|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in 106zpi}}
{{Harmonics in cet|44.306|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in 106zpi (continued)}}


; [[90ed10]]  
; [[106ed6]]  
* Step size: 44.292{{c}}, octave size: 1195.9{{c}}
* Step size: NNN{{c}}, octave size: NNN{{c}}
Compressing the octave of 27edo by around 4{{c}} results in improved primes 3, 5, 7 and 11, but a worse prime 2 and much worse 13. This approximates all harmonics up to 16 within 16.4{{c}}. The tuning 90ed10 does this.
Compressing the octave of 41edo by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 106ed6 does this.
{{Harmonics in equal|90|10|1|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in 90ed10}}
{{Harmonics in equal|106|6|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 106ed6}}
{{Harmonics in equal|90|10|1|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in 90ed10 (continued)}}
{{Harmonics in equal|106|6|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 106ed6 (continued)}}


; [[43edt]]  
; [[65edt]]  
* Step size: 44.232{{c}}, octave size: 1194.3{{c}}
* Step size: NNN{{c}}, octave size: NNN{{c}}
Compressing the octave of 27edo by around 5.5{{c}} results in the same benefits and drawbacks as 90ed10, but amplified. This approximates all harmonics up to 16 within 21.2{{c}}. The tuning 43edt does this.
Compressing the octave of 41edo by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 65edt does this.
{{Harmonics in equal|43|3|1|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in 43edt}}
{{Harmonics in equal|65|3|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 65edt}}
{{Harmonics in equal|43|3|1|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in 43edt (continued)}}
{{Harmonics in equal|65|3|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 65edt (continued)}}