User:BudjarnLambeth/Sandbox2: Difference between revisions
Line 7: | Line 7: | ||
= Title2 = | = Title2 = | ||
== Octave stretch or compression == | == Octave stretch or compression == | ||
What follows is a comparison of compressed-octave | What follows is a comparison of stretched- and compressed-octave 41edo tunings. | ||
; | ; [[184zpi]] / [[WE|41et, 11-limit WE tuning]] | ||
* Step size: | * Step size: 29.277{{c}}, octave size: NNN{{c}} | ||
Stretching the octave of EDONAME by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. Its 11-limit WE tuning and 11-limit [[TE]] tuning both do this. So does 184zpi, which is identical to WE within 1/1000 of a cent. | |||
{{Harmonics in | {{Harmonics in cet|29.277|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 41et, 11-limit WE tuning}} | ||
{{Harmonics in | {{Harmonics in cet|29.277|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 41et, 11-limit WE tuning (continued)}} | ||
; | ; 41edo | ||
* Step size: | * Step size: 29.268{{c}}, octave size: 1200.0{{c}} | ||
Pure-octaves 41edo approximates all harmonics up to 16 within NNN{{c}}. | |||
{{Harmonics in | {{Harmonics in equal|41|2|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 41edo}} | ||
{{Harmonics in | {{Harmonics in equal|41|2|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 41edo (continued)}} | ||
; [[ | ; [[WE|41et, 13-limit WE tuning]] | ||
* Step size: | * Step size: 29.267{{c}}, octave size: NNN{{c}} | ||
Compressing the octave of | Compressing the octave of 41edo by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. Its 13-limit WE tuning and 13-limit [[TE]] tuning both do this. | ||
{{Harmonics in | {{Harmonics in cet|29.267|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 41et, 13-limit WE tuning}} | ||
{{Harmonics in | {{Harmonics in cet|29.267|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 41et, 13-limit WE tuning (continued)}} | ||
; [[ | ; [[147ed12]] | ||
* Step size | * Step size: NNN{{c}}, octave size: NNN{{c}} | ||
Compressing the octave of 41edo by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 147ed12 does this. | |||
{{Harmonics in equal|147|12|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 147ed12}} | |||
{{Harmonics in equal|147|12|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 147ed12 (continued)}} | |||
Compressing the octave of | |||
{{Harmonics in | |||
{{Harmonics in | |||
; [[ | ; [[106ed6]] | ||
* Step size: | * Step size: NNN{{c}}, octave size: NNN{{c}} | ||
Compressing the octave of | Compressing the octave of 41edo by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 106ed6 does this. | ||
{{Harmonics in equal| | {{Harmonics in equal|106|6|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 106ed6}} | ||
{{Harmonics in equal| | {{Harmonics in equal|106|6|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 106ed6 (continued)}} | ||
; [[ | ; [[65edt]] | ||
* Step size: | * Step size: NNN{{c}}, octave size: NNN{{c}} | ||
Compressing the octave of | Compressing the octave of 41edo by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 65edt does this. | ||
{{Harmonics in equal| | {{Harmonics in equal|65|3|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 65edt}} | ||
{{Harmonics in equal| | {{Harmonics in equal|65|3|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 65edt (continued)}} |