User:BudjarnLambeth/Sandbox2: Difference between revisions
Line 7: | Line 7: | ||
= Title2 = | = Title2 = | ||
== Octave stretch or compression == | == Octave stretch or compression == | ||
What follows is a comparison of stretched- and compressed-octave 27edo tunings. | |||
; [[zpi|105zpi]] | |||
* Step size: 44.674{{c}}, octave size: NNN{{c}} | |||
Stretching the octave of 27edo by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 105zpi does this. | |||
{{Harmonics in cet|44.674|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in 105zpi}} | |||
{{Harmonics in cet|44.674|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in 105zpi (continued)}} | |||
; | ; 27edo | ||
* Step size: | * Step size: 44.444{{c}}, octave size: 1200.0{{c}} | ||
Pure-octaves | Pure-octaves 27edo approximates all harmonics up to 16 within NNN{{c}}. | ||
{{Harmonics in equal| | {{Harmonics in equal|27|2|1|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in 27edo}} | ||
{{Harmonics in equal| | {{Harmonics in equal|27|2|1|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in 27edo (continued)}} | ||
; [[WE| | ; [[WE|27et, 13-limit WE tuning]] | ||
* Step size: | * Step size: 44.375{{c}}, octave size: NNN{{c}} | ||
Compressing the octave of 27edo by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. Its 13-limit WE tuning and 13-limit [[TE]] tuning both do this. | |||
{{Harmonics in cet| | {{Harmonics in cet|44.375|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in 27et, 13-limit WE tuning}} | ||
{{Harmonics in cet| | {{Harmonics in cet|44.375|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in 27et, 13-limit WE tuning (continued)}} | ||
; [[ | ; [[WE|27et, 7-limit WE tuning]] | ||
* Step size: | * Step size: 44.306{{c}}, octave size: NNN{{c}} | ||
Compressing the octave of 27edo by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. Its 7-limit WE tuning and 7-limit [[TE]] tuning both do this. | |||
{{Harmonics in cet| | {{Harmonics in cet|44.306|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in 27et, 7-limit WE tuning}} | ||
{{Harmonics in cet| | {{Harmonics in cet|44.306|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in 27et, 7-limit WE tuning (continued)}} | ||
; [[ | ; [[zpi|106zpi]] | ||
* Step size: | * Step size: 44.302{{c}}, octave size: NNN{{c}} | ||
Compressing the octave of 27edo by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 106zpi does this. | |||
{{Harmonics in cet| | {{Harmonics in cet|44.302|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in 106zpi}} | ||
{{Harmonics in cet| | {{Harmonics in cet|44.302|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in 106zpi (continued)}} | ||
; [[ | ; [[97ed12]] | ||
* Step size: | * Step size: NNN{{c}}, octave size: NNN{{c}} | ||
_ing the octave of 27edo by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 97ed12 does this. | |||
{{Harmonics in equal| | {{Harmonics in equal|97|12|1|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in 97ed12}} | ||
{{Harmonics in equal| | {{Harmonics in equal|97|12|1|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in 97ed12 (continued)}} | ||
; [[ | ; [[70ed6]] | ||
* Step size: | * Step size: NNN{{c}}, octave size: NNN{{c}} | ||
_ing the octave of 27edo by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 70ed6 does this. | |||
{{Harmonics in equal| | {{Harmonics in equal|70|6|1|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in 70ed6}} | ||
{{Harmonics in equal| | {{Harmonics in equal|70|6|1|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in 70ed6 (continued)}} | ||
; [[43edt]] | |||
* Step size: NNN{{c}}, octave size: NNN{{c}} | |||
_ing the octave of 27edo by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 43edt does this. | |||
{{Harmonics in equal|43|3|1|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in 43edt}} | |||
{{Harmonics in equal|43|3|1|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in 43edt (continued)}} | |||
; [[90ed10]] | |||
* Step size: NNN{{c}}, octave size: NNN{{c}} | |||
_ing the octave of 27edo by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 90ed10 does this. | |||
{{Harmonics in equal|90|10|1|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in 90ed10}} | |||
{{Harmonics in equal|90|10|1|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in 90ed10 (continued)}} |