User:BudjarnLambeth/Sandbox2: Difference between revisions
Line 6: | Line 6: | ||
= Title2 = | = Title2 = | ||
== Octave compression == | == Octave stretch or compression == | ||
What follows is a comparison of | What follows is a comparison of stretched-octave 31edo tunings. | ||
; | ; EDONAME | ||
* Step size: | * Step size: 38.710{{c}}, octave size: 1200.0{{c}} | ||
Pure-octaves | Pure-octaves 31edo approximates all harmonics up to 16 within NNN{{c}}. | ||
{{Harmonics in equal| | {{Harmonics in equal|31|2|1|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in EDONAME}} | ||
{{Harmonics in equal| | {{Harmonics in equal|31|2|1|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in EDONAME (continued)}} | ||
; [[WE| | ; [[WE|31et, 13-limit WE tuning]] | ||
* Step size: | * Step size: 38.725{{c}}, octave size: NNN{{c}} | ||
Stretching the octave of 31edo by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. Its 13-limit WE tuning and 13-limit [[TE]] tuning both do this. | |||
{{Harmonics in cet| | {{Harmonics in cet|38.725|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in 31et, 13-limit WE tuning}} | ||
{{Harmonics in cet| | {{Harmonics in cet|38.725|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in 31et, SUBGROUP WE tuning (continued)}} | ||
; [[zpi| | ; [[zpi|127zpi]] | ||
* Step size: | * Step size: 38.737{{c}}, octave size: NNN{{c}} | ||
Stretching the octave of 31edo by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 127zpi does this. | |||
{{Harmonics in cet| | {{Harmonics in cet|100|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in 127zpi}} | ||
{{Harmonics in cet| | {{Harmonics in cet|100|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in 127zpi (continued)}} | ||
; [[ | ; [[WE|31et, 11-limit WE tuning]] | ||
* Step size: | * Step size: 38.748{{c}}, octave size: NNN{{c}} | ||
_Stretching the octave of 31edo by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. Its 11-limit WE tuning and 11-limit [[TE]] tuning both do this. | |||
{{Harmonics in | {{Harmonics in cet|38.748|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in 31et, 11-limit WE tuning}} | ||
{{Harmonics in | {{Harmonics in cet|38.748|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in 31et, 11-limit WE tuning (continued)}} | ||
; [[ | ; [[111ed12]] | ||
* Step size: NNN{{c}}, octave size: | * Step size: NNN{{c}}, octave size: NNN{{c}} | ||
Stretching the octave of 31edo by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 111ed12 does this. | |||
{{Harmonics in equal| | {{Harmonics in equal|111|12|1|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in 111ed12}} | ||
{{Harmonics in equal| | {{Harmonics in equal|111|12|1|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in 111ed12 (continued)}} | ||
; [[80ed6]] | |||
* Step size: NNN{{c}}, octave size: NNN{{c}} | |||
Stretching the octave of 31edo by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 80ed6 does this. | |||
{{Harmonics in equal|80|6|1|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in 80ed6}} | |||
{{Harmonics in equal|80|6|1|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in 80ed6 (continued)}} | |||
; [[25ed7/4]] | |||
* Step size: NNN{{c}}, octave size: NNN{{c}} | |||
Stretching the octave of 31edo by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 25ed7/4 does this. | |||
{{Harmonics in equal|25|7|4|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in 25ed7/4}} | |||
{{Harmonics in equal|25|7|4|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in 25ed7/4 (continued)}} |